
Adaptive Packet Throttling Technique for
Congestion Management in Mesh NoCs

N. S. Aswathy1(B), R. S. Reshma Raj1, Abhijit Das2, John Jose2(B),
and V. R. Josna1

1 Goverment Engineering College Bartonhill, Trivandrum, Kerala, India
nsaswathy1993@gmail.com, reshmaraj26@gmail.com, josna.chandu@gmail.com

2 Indian Institute of Technology Guwahati, Guwahati, Assam, India
{abhijit.das,johnjose}@iitg.ernet.in

Abstract. Network on Chip is an emerging communication framework
for multi-core systems. Due to increasing number of cores and com-
plex workloads, congestion management techniques in NoC are gaining
more research focus. Packet throttling is one of a cost effective technique
for congestion management. It delays the packet injection into the net-
work, thereby regulating traffic in network and hence provide ease of
packet movement generated by other critical applications. Finding point
of throttling and rate of throttling are two major design issues that can
impact the performance and stability of any throttling algorithm. Exist-
ing state of the art throttling techniques use local throttling decision
coordinated by a single central controller. We overcome the issues related
with this by partitioning the network into number of subnetworks, each
with a zonal controller. Our experiment results in 8× 8 2D mesh with
real traffic workloads consisting of SPEC 2006 CPU benchmarks shows
an average packet latency reduction of 6.2% than the state of the art
packet throttling techniques.

Keywords: Network congestion · Packet throttling

1 Introduction and Related Work

Design and scalability issues associated with increasing core counts on Chip
Multi-Processors (CMPs) is a prominent research domain in computer architec-
ture over the last decade. Communication among cores in these CMPs housing
processors, caches and memory controllers is an important task that requires
deeper exploration for better performance and throughput. Thus designing a
scalable interconnect is critical for future energy efficient CMP designs.

Network-on-Chip (NoC), is a scalable, packet switched and distributed inter-
connect framework that offer much lower latency and higher bandwidth than
their traditional bus based counter parts. In a tiled CMP each processing core
encloses superscalar processor, a private L1 cache and slice of shared L2 cache
distributed all over the CMP. Each of these processing core is connected to a
c© Springer Nature Singapore Pte Ltd. 2017
B. K. Kaushik et al. (Eds.): VDAT 2017, CCIS 711, pp. 337–344, 2017.
https://doi.org/10.1007/978-981-10-7470-7_33



338 N. S. Aswathy et al.

switching device called a router. Inter core communication is needed in the event
of an L1 cache miss because the L2 look up happen at a core different from the
source core due to the SNuCA based L2 cache block mapping. They use packet
based communication where the packet contains control information like source
address, destination address, L2 bank address etc. A source core creates a packet
when an L1 miss occurs and it is injected into the local router. Input buffers and
handshaking signals between routers facilitate flow control for packet movement
between source and destination routers. Wormhole switching [1] is used in NoCs,
where each of these packets are divided into smaller flow control units called flits.
These packets traverse through the network to the destination core by following
the routing algorithm implemented in the router.

As more and more packets compete for shared resources like routers and links,
the overall system throughput degrades drastically. This network congestion, if
not dealt properly can eventually bring the entire system down. Source throttling
is an efficient congestion-control approach for improving system performance.
Cores injecting large traffic and crowding the network are throttled temporarily
from packet injection.

Source throttling in wormhole networks are studied even before NoC became
a popular alternative to traditional bus and crossbar interconnects [1,2]. Global-
knowledge-based and self tuned source throttling technique in multiprocessor
networks [2] gracefully adapts to the dynamic congestion pattern. Fairness via
source throttling (FST) [3], proposes to measure the unfairness in shared mem-
ory system. Then based on a threshold, traffic from cores that cause unfairness in
the system are throttled down. ACT (Adaptive Cluster Throttling) [4], explore
the possibility of making application clusters based on traffic traits and then
throttling these clusters alternatively. Nychis et al. [5] propose a low complexity
and high performance source throttling technique with application-level aware-
ness for reducing network congestion. Heterogeneous Adaptive Throttling (HAT)
[6] which is the first throttling technique combining both application aware and
network load aware allows network-sensitive applications to make fast progress
by throttling network-intensive applications.

2 Motivation

Source throttling is introduced in NoC for tackling with heavy traffics from data
intensive applications. The effort is to mitigate congestion by identifying network
intensive cores and then selectively throttling packet injections from those cores
to reduce congestion in the system. As the congestion goes down, the system
performance improves and throttling is disabled.

Since heterogenous applications inject diverse traffic into the network, a
source throttling technique must be application aware for deciding on whom
to throttle. Blindly throttling applications only based on their traffic pattern
might lead to under or over utilization of network resources. A source throttling
technique must also be network aware for knowing the throttling rate. Moreover
the hardware that implements throttling should be simple. Available techniques



Packet Throttling in Mesh NoCs 339

in literature are either application oblivious [2], network load unaware [5] or
sub-optimal [3,4,6].

In this paper we identify the limitations of HAT [6] and suggest few modifica-
tions so as to improve its performance. HAT uses local throttling decisions taken
by the respective core. In HAT each application is classified by a central con-
troller either network intensive or network non-intensive applications based on
the number of packets it is inject into the network at regular time period. Cores
which inject packets greater than a threshold are classified as network intensive
and others fall under the group of network non-intensive. All the network inten-
sive applications are throttled in the subsequent time period. The problem with
this method is that it may lead to either over throttling or under throttling.
Over throttling happens when every core injects packets which is higher than a
threshold value set by the central controller leading to throttling of all the cores.
Under throttling occurs when most of the cores inject very less packets while
few injects packets just higher than the threshold. Even though there is no much
congestion in the network, the cores which generate misses above threshold are
throttled. Both over throttling and under throttling happen because each core is
unaware about what is the injection pattern in other cores. We identify around
7 number of over throttling cases and 8 number of under throttling cases on
an average upon implementing HAT using the five SPEC 2006 CPU benchmark
mix (Refer Table 1 for workloads).

Another problem with HAT is the single central controller. After receiving
packet count updates from each core, the central controller finds out the rate
of throttling. But for large networks, having a single central controller is a big
bottleneck as it is not a scalable proposal. The single central controller can cause
high round trip delay. Let t be the transmission time for the request to the central
controller and d be the processing delay at the central controller. The core need
to wait 2t + d time to receive the response (round trip time). Since there is a
single central controller situated at the center of the mesh, both d and t also can
be high. Because of the slow response from the central controller, the system
stabilization time also increases. Our experimental implemetation of HAT shows
that in an 8× 8 mesh, the round trip delay of control packets that carry crucial
throttling parameters from a core to the central controller can be around 40-45
cycles. We also find that the central controller can become a hotspot at regular
intervals due to flooding of control packets from various other cores.

Exploring further on the above mentioned limitations of HAT, we propose
an improved application and network load aware, adaptive source throttling
technique with a distributed zonal controller logic that implements differential
throttling. Evaluation and comparison studies of our approach with the existing
proposals are found in our favour with improved system performance.

3 Proposed Method

In our approach, a 2D mesh with an 8× 8 organization is considered. The whole
network is logically partitioned into four 4× 4 subnetworks. Instead of using



340 N. S. Aswathy et al.

Fig. 1. Sending counter values from all nodes to the zonal controllers

a single central controller like in HAT [6], we use four zonal controllers, one
for each of the four partitions as shown in Fig. 1. The four zonal controllers
(shown in dark colours) eliminate the single central controller bottleneck. The
zonal controllers are selected in such a way that it should have at least two-
hop neighbour in each of the four directions. This is to ensure that the zonal
controller is approximately in the center of the respective partition, so that, the
controller can legitimately control all the cores within that partition. We use a
5-bit counter per core to record the cache misses generated by the core.

Fig. 2. Zonal controller sending warning messages

The whole time period is sequentially divided into a series of three phases:
(a) measurement phase-M, (b) processing phase-P and (c) throttling phase-T.
During the measurement phase, the counter is incremented for each of the miss



Packet Throttling in Mesh NoCs 341

generated by the respective core. At the beginning of the processing phase, the
miss statistics from each of the cores in the partition is send to the zonal con-
troller as shown in Fig. 1. The zonal controller receives information from each
of the core in its partition. For example, all nodes in partition 1 send control
packets at the end of measurement phase to node 18. Node 18 will process these
information received and determines the throttling parameters.A threshold is
set by the zonal controller and warning messages are send back to the respective
cores which hold a counter value greater than the threshold as shown in Fig. 2.
For example in partition 3 (top left partition) the zonal controller 42 identifies
35 and 56 as the nodes whose cache miss count value during the measurement
phase is greater than the threshold. So warning messages are send to 35 and 56
during the processing phase to initiate throttling. Unlike in HAT, here the zonal
controller determines which core to be throttled instead of the local core. Hence
this approach avoids the problems associated with local throttling decision. Dur-
ing the throttling phase, packets generated from the cores having counter value
greater than threshold will be throttled at a pre-determined rate. If throttling
rate is 2/3, two packets will be throttled out of the three packets generated.
Likewise, if throttling rate is 1/3, one packet will be throttled out of the three
packets generated by the core. The counter is updated for each measurement
phase based on the number of misses generated by the core during the time
window. This ensures that the same core is not throttled every time.

Here we use a time window of 128 cycles for the measurement phase, i.e.,
for every 128 cycles the counter is updated. For the processing phase we use 32
cycles, i.e., with in this 32 cycles the counter statistics is send to the respective
zonal controllers from the cores and the zonal controllers will send the warning
message to the cores having counter statistics greater than the threshold of 15.
After that for a 128 cycle, the cores which receive the warning message are
throttled as per throttling rate mentioned.

Throttling is not blocking packets, it is temporarily delaying packets injected
into the network. The throttled packets tries to inject into the network during
subsequent cycles. Here we provide 2 cycle delay for each of the throttled packets
i.e., after the packet is throttled the core will try to inject the throttled packet
after 2 cycles. If a new packet is generated in the core during the same cycle
it will be queued in the core just after the throttled packets. Preference will
be given to already throttled packets than newly generated packets waiting for
injection into the router. This makes sure that none of the throttled packets will
be delayed for a longer time duration.

4 Experimental Analysis

4.1 Simulation Setup

We use Booksim2.0 [7], the cycle accurate NoC simulator for modelling 8 × 8
CMP with 2D topology. Booksim supports NoC traffic from real traffic traces in
addition to the synthetic traffic patterns. We use the network traces generated



342 N. S. Aswathy et al.

by a 64 core CMP (modelled via GEM5 architectural simulator) upon running
64 instances of different SPEC 2006 CPU benchmark applications.

In GEM5 [8], we run one instance of a SPEC 2006 CPU benchmark appli-
cation on each of the core. Based on the misses per kilo instructions (MPKI)
each SPEC application is grouped into Low MPKI (less than 5), Medium MPKI
(between 5 and 25) and High MPKI(greater than 25). In our experiment we
consider calculix, gobmk, gromacs, h264ref under Low MPKI, bwaves, bzip2,
gamess, gcc under Medium MPKI and hmmer.nph3, lbm, mcf, leslie3d under
High MPKI. We construct 5 workload mixes based on the proportion of network
injection intensity of these applications as given in Table 1. To understand the
distribution of benchmarks in workloads, consider workload 3 (WL3). Out of 64
cores, 16 cores run bwaves benchmark, 16 cores run bzip2 benchmark, 16 cores
run gamess benchmark and the remaining 16 cores run gcc benchmark. Similarly
other workloads can also be described.

The network trace generated by the above multicore workload is given to
Booksim for modelling the NoC events and statistics are collected. Each of the
NoC router port is associated with 8 VCs. We use the dimension order routing
algorithm. All cache miss requests are single flit packets and cache miss replies
are 4-flit packets.

4.2 Results and Discussions

If a core is identified as to be throttled for a single throttling phase, then it
is called one instance of throttling. Similarly if a core is identified as to be
throttled for m consecutive throttling phases and another core is to be throttled
for n consecutive throttling phases then altogether it is considered as (m+n)
instances of throttling.

Table 1. Workload Constitution

Workload# SPEC 2006 Benchmarks

WL1 calculix(16) gobmk(16) gromacs(16) h264ref(16)

WL2 calculix(16) gobmk(16) gamess(16) gcc(16)

WL3 bwaves(16) bzip2(16) gamess(16) gcc(16)

WL4 bwaves(16) bzip2(16) hmmer.nph3(16) lbm(16)

WL5 hmmer.nph3(16) lbm(16) mcf(16) leslie3d(16)

Here, different workload mixes results in different number of throttling
instances. From the result analysis, we have identified that a higher MPKI
workload leads into a larger number of throttled instances while a lower MPKI
workload results in a smaller number of throttled instances. For low MPKI work-
load(WL1) we have identified 22 throttling instances and for workload WL2 113
instances are identified. The medium MPKI workload WL3 results 495 throttling



Packet Throttling in Mesh NoCs 343

Fig. 3. Various phases in the application execution

instances and for the workload WL4 998 throttling instances are identified. The
largest number of instances are identified for higher MPKI wokload WL5 which
is around 1271.

Figure 3 illustrates how the proposed system behaves in the different phases of
execution. Let M1,M2,M3, ... be the different measurement phases, P1, P2, P3, ...
be the different processing phases and T1, T2, T3, ... be the different throttling
phases of the entire time frame in the application’s execution. Consider Mi, Pi

and Ti. During Mi the counter value for each of the core is incremented for every
cache miss request from that core. These statistics is send to the respective zonal
controllers at the beginning of Pi. The zonal controllers will send the warning
message to the cores with number of packets greater than the threshold during
Pi. The cores which receive warning messages are throttled during Ti. After the
completion of the first measurement phase M1, the next phase of measurement
M2 starts the execution in parallel with the processing phase P1. Similarly, a
third measurement phase M3 is initiated at the beginning of processing phase
P2. This series continues throughout the execution of program in a pipelined
manner.

Fig. 4. Overall packet latency Fig. 5. Throttled packet latency

Figure 4 shows the overall packet latency obtained from both conventional
method and proposed technique. We can see from the figure that using the pro-
posed method the overall latency of the system is reduced considerably. The
control overhead induced by throttling is not affecting the overall packet latency
of the network. Figure 5 plots the packet latency of the throttled packets. By



344 N. S. Aswathy et al.

packet throttling we are delaying the packet injection. Hence the overall packet
latency of throttled packets will be high. Delaying the packets from the con-
gestion causing cores helps the unthrottling cores to inject packets into a least
congested network and hence can reach the destination with minimal latency.
Thus the average packet latency of the entire network can be reduced.

5 Conclusion

Congestion in NoC is a challenging issue to be solved with cost effective tech-
niques. Packet throttling is one kind of such technique, which suppress packet
injection into the network from the core causing congestion. We proposed a cost
effective packet throttling technique which properly manages the point of throt-
tling and the rate of throttling. Multiple zonal controllers in our technique help
to overcome over-throttling and under-throttling issues of the existing throttling
techniques. Unthrottled packets get more benefit by throttling of heavy injection
cores. Results showed that the number of throttling instances increases with the
increase in number of misses. Also, the overall packet latency of the system is
decreased by throttling the congestion causing cores.

References

1. Baydal, E., et al.: A congestion control mechanism for wormhole networks. In:
Ninth Euromicro Workshop on Parallel and Distributed Processing. IEEE, pp. 19–26
(2001)

2. Thottethodi, M., et al.: Self-tuned congestion control for multiprocessor networks.
In: The Seventh International Symposium on High-Performance Computer Archi-
tecture, HPCA, pp. 107–118. IEEE (2001)

3. Ebrahimi, E., et al.: Fairness via source throttling: a configurable and high-
performance fairness substrate for multi-core memory systems. ACM SIGPLAN
Not. 45(3), 335–346 (2010). ACM

4. Ausavarungnirun, R., et al.: Adaptive cluster throttling: improving high-load per-
formance in bufferless on-chip networks. Computer Architecture Lab (CALCM),
Carnegie Mellon University, SAFARI Technical Report TR-2011-006 (2011)

5. Nychis, G.P., et al.: On-chip networks from a networking perspective: congestion
and scalability in many-core interconnects. ACM SIGCOMM Comput. Commun.
Rev. 42(4), 407–418 (2012)

6. Chang, K.K.-W., et al.: HAT: heterogeneous adaptive throttling for on-chip net-
works. In: IEEE 24th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pp. 9–18. IEEE (2012)

7. Jiang, N., et al.: A detailed and flexible cycle-accurate network-on-chip simulator.
In: 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 86–96. IEEE (2013)

8. Binkert, N., et al.: The gem5 simulator. ACM SIGARCH Comput. Architect. News
39(2), 1–7 (2011)


	Adaptive Packet Throttling Technique for Congestion Management in Mesh NoCs
	1 Introduction and Related Work
	2 Motivation
	3 Proposed Method
	4 Experimental Analysis
	4.1 Simulation Setup
	4.2 Results and Discussions

	5 Conclusion
	References




