
Designing Data-Aware
Network-on-Chip for Performance

Abhijit Das1 2 and John Jose1

1Indian Institute of Technology Guwahati, Assam, India
2Univ Rennes, Inria, Lannion, France

abhijit.a.das@inria.fr

Abstract—Network-on-Chip (NoC) is a widely adopted commu-
nication infrastructure in Tiled Chip Multi-Processors (TCMPs)
due to its high transfer bandwidth, scalability and reliability. As
the number of cores continues to increase in modern TCMPs,
NoC plays a pivotal role in determining the performance. In
fact, it is reported that NoC is responsible for 60% to 75% of
the miss latency experienced by the applications run on TCMPs.
Nevertheless, most of the existing memory access techniques and
optimisations are NoC oblivious, which limits their performance.

This work advocates for considering NoC and memory
hierarchy together when designing techniques and proposing
optimisations for TCMPs. It shows that designing data-aware
NoC with the help of memory hierarchy improves resource
utilisation, reduces memory access latency and improves system
performance. Specifically, the architectures proposed in this work
can improve overall system performance by up to 19% with
negligible storage, area and power overhead. While TCMPs
continue to scale with the help of electrical, wireless and photonic
NoCs, the proposed work can influence future design decisions.

Index Terms—Network-on-Chip (NoC), Tiled Chip Multi-
Processor (TCMP), Network Stall Time, Cache Miss Penalty.

I. INTRODUCTION

Multiple factors, including the continuance of Moore’s
Law [1], end of Dennard’s Scaling [2] and limits of
Instruction-Level Parallelism (ILP) [3] have led to the
paradigm shift from uni-core to multi-core systems. 2015 In-
ternational Technology Roadmap for Semiconductors (ITRS)
report predicts that the increasing demand for information
processing will drive a 30-fold increase in the number of pro-
cessing cores by 2030 [4]. It is indeed visible in the industry
with Intel Xeon Phi [5], AMD EPYC [6] and Ampere Altra [7]
processors featuring up to 128 cores in their Tiled Chip Multi-
Processors (TCMPs). As the number of cores continues to
increase in TCMPs, on-chip communication plays a pivotal
role in determining the performance. Global wires, shared
buses, and monolithic crossbars have failed to provide the
necessary communication infrastructure. As a result, a shared
Network-on-Chip (NoC) based communication infrastructure
is employed in most of the modern TCMPs [8]. Figure 1 shows
the conceptual view of a standard NoC based TCMP.

NoC is a multi-hop packet-based communication infrastruc-
ture that connects cores through routers. NoC is preferred
over others due to its high transfer bandwidth, scalability, and
reliability. Applications running on different cores use it to ac-
cess on-chip cache memories and off-chip main memory. NoC

0

NoC

MC

MCMC

MC

PEPE R R

PE

PE

PE

PE

PE

R

PE

PEPE

R

R R R

R

R

RR

.

.

.

.

.

.

.

.

.

.

.

.

W0
W1
W2
W3
W4
W5
W6
W7

W0
W1
W2
W3
W4
W5
W6
W7

N-1

W0
W1
W2
W3
W4
W5
W6
W7

1

T

B2

B1

B0H

Processor

L1 D

NIC

L1 I
L2 Bank

(LLC)

R

H B0 B1 B2 T

Crossbar

North
Local

West
South
East

North

Input Unit

VC n-1

VC 1

VC 0

.

.
Local

West
South

East

Switch Allocator
(SA)

VC Allocator
(VA)

Credits
Credits

Route Compute
(RC)

Figure 1: Conceptual view of an NoC based TCMP.

plays a significant role in determining the performance as it is
responsible for 60% to 75% of the miss latency experienced
by these applications [9]. Nevertheless, most of the existing
memory access techniques and optimisations just focus on the
memory hierarchy and treat the underlying NoC like a black
box. The main reason behind this practice is the assumption
that the on-chip communication latency is fixed (defined) and
hardly changes over time. On the contrary, packets in NoC
experience indefinite delays at each hop due to routing and
arbitration decisions. Hence, the communication latency in
NoC is undefined and varies according to the available traffic.
As NoC plays a vital role in memory access latency, ignoring
it may severely impact the overall performance of TCMPs.

Existing literature suggests that considering NoC and mem-
ory hierarchy together is the way forward in TCMP design [9].
Existing literature also considers efficient utilisation of NoC
resources as a fundamental challenge in TCMP design, as
currently, it is only about 20% [10]. This work accepts
both; the suggestion as well as the challenge. There are
innovative solutions available in the literature about using



NoC for caching and coherence [11][12][13][14][15]. Data
and application-aware solutions are also available for efficient
utilisation of NoC resources [16][17][18][19][20]. However,
most of these solutions focus on independently optimising the
NoC without bothering about its interaction with the memory
hierarchy, thus leading to sub-optimal performance. This work
attempts to establish a dynamic cooperation between NoC and
the memory hierarchy for improved performance. By gathering
information about the data travelling from one level of memory
to another, we exploit underutilised NoC resources to design
techniques and propose optimisations that reduce memory
access latency and improve overall system performance1.

II. DATA-AWARE NETWORK-ON-CHIP

Existing techniques usually target individual shared re-
sources, like NoC is optimised for packet latency, Last Level
Cache (LLC) is optimised for hit rate, and Memory Controller
(MC) is optimised for bank access latency, etc. These opti-
mised metrics may not be directly related to the performance
experienced by the applications. For example, service latency
of packets might be hidden due to Memory-Level Parallelism
(MLP) [22], and hence packet latency might not be indicative
of the network-related stall time at the core (processor)[23].
Similarly, LLC is distributed across multiple cores as banks
and requested data can be anywhere, from the nearest to
the farthest bank. Hence, just the hit rate alone might not
be indicative of the LLC access time at the processor [24].
Moreover, optimising individual shared resources for mini-
mum service guarantees often leads to over-provision. Studies
on Warehouse-Scale Computers (WSCs) have reported average
resource utilisation between 10% and 50% only [25][26].

To design techniques and propose optimisations that can di-
rectly impact the overall system performance, shared resources
must be considered together. So, rather than ignoring the NoC,
it should be considered alongside the memory hierarchy. All
the shared resources must also understand the characteristics
and importance of the applications to improve their utilisation.
However, labelling a particular application as more important
than others at all times can be misleading, as for the same
application, data requested at different times will have dif-
ferent importance to the processor. This work goes one level
deeper, and instead of being application-aware, it focuses on
designing data-aware NoC to improve the performance. While
the characteristics and importance of the data are relatively
well understood at the memory hierarchy, i.e. on-chip cache
memories and off-chip main memory, less is known at the
NoC. The complex and chaotic interaction between the cores
in a TCMP makes it difficult for the NoC to understand about
the data (packet) on its own. Additional challenges include
varying packet injection rates, queuing delay, MLP, spatial
location of the LLC banks and MCs, etc. Hence, the NoC
must interact with the memory hierarchy to understand about
the data travelling from one level of memory to another.

1This paper summarises the Ph.D. dissertation of author A. Das [21].

Table 1: System configuration (*varies in IV, V and VI)

Processor 64 OoO x86 cores, 1.3GHz
L1 Cache 32KB, 8-way, private, split

L2 Cache (LLC) 512KB×64 cores, 16-way, shared
Memory Bank 4; one located at each corner

Coherence MESI/MOESI distributed directory

NoC

8×8 2D-Mesh topology, 128-bit channel
3 Virtual Networks (VNs)
3 Virtual Channels (VCs) per VN
1-flit depth control VC, 4-flit depth data VC

Routing 2-stage routers (1.54ns), XY-DOR algorithm
VC based wormhole packet-switching

Packets 1-flit for control packet, 5-flit for data packet
Word/Flit/Block 64-bit/128-bit/64B; 2-words/flit, 8-words/block

Benchmarks SPEC CPU2006 (multi-programmed)
PARSEC 3.0 and SPLASH-2x (multi-threaded)

This work advocates for considering NoC and memory
hierarchy together when designing techniques and proposing
optimisations for TCMPs. It shows that designing data-aware
NoC with the help of memory hierarchy improves resource
utilisation, reduces memory access latency and improves sys-
tem performance in TCMPs. To this end, our work makes the
following contributions toward data-aware NoC design:

• Critical Packet Prioritisation [27]
• Critical Word Prioritisation [28], and
• Opportunistic Caching [29][30][31][32]

III. EVALUATION METHODOLOGY

A. Simulation Infrastructure

All the architectures proposed in this work are modelled on
event-driven gem5 simulator [33], and the system configura-
tion is given in Table 1. It is similar to Intel Xeon Phi Processor
7235 [34] with shared and distributed L2 cache (LLC). The
additional hardware-related area and power overheads are
obtained using ORION 2.0 [35] at 65nm, and DSENT [36]
and McPAT [37] at 22nm processor technology, all at 1GHz
operating frequency. Some of the additional hardware are also
implemented in structural RTL Verilog HDL and synthesised
in Synopsis Design Compiler using a TSMC 65nm standard
cell library at 1GHz operating frequency. For a relative com-
parison, most of the results are normalised with respect to a
standard baseline architecture (without any optimisation).

B. Performance Metrics

Though multiple metrics are considered to evaluate and
analyse the performance, the most important of them are:

• Network Stall Time (NST ): It is defined as the number
of cycles a processor stalls waiting for a network packet.

• L1 Cache Miss Penalty (MPL1): It is defined as the
number of cycles required to replace an existing block in
the L1 cache with the requested, incoming block.

MPL1 = tL1−LLC
Request + TLLC

Access + tLLC−L1
Reply (1)

where

TLLC
Access =

 TLLC
Hit if LLC Hit

TLLC
Miss + MPLLC if LLC Miss

(2)



 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MT1 MT2 MT3 MT4

N
o
rm

al
is

ed
 U

sa
g
e 

W
ai

t 
T

im
e

SPEC CPU2006 Benchmark Mixes and PARSEC 3.0 Benchmarks

Lower the better

Round-Robin Aergia SAR

(a) Usage wait time

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MT1 MT2 MT3 MT4

N
o
rm

al
is

ed
 N

et
w

o
rk

 S
ta

ll
 T

im
e

SPEC CPU2006 Benchmark Mixes and PARSEC 3.0 Benchmarks

Lower the better

Round-Robin Aergia SAR

(b) Network stall time

Figure 2: Performance of critical packet prioritisation

Here, T i
j is the time taken by module i to complete a task

j whereas, ti−j
k is the time taken by message k to travel

from module i to module j through the underlying NoC.
• System Speedup (S): For multi-programmed workloads:

S =
IPCProposed

IPCBaseline
(3)

where IPCBaseline and IPCProposed are the total In-
structions Per Cycle (IPC) of the baseline and proposed
architectures, respectively. For multi-threaded workloads:

S =
ExecT imeBaseline

ExecT imeProposed
(4)

where ExecT imeBaseline and ExecT imeProposed are
the total execution time of the baseline and proposed
architectures, respectively. We prefer execution time as
multi-threaded workloads have synchronisation primitives
like locks and barriers, which brings variation in IPC.

IV. CRITICAL PACKET PRIORITISATION

A. Introduction

Being a shared infrastructure, multiple cores can compete
for an NoC resource at the same time. For example, multiple
packets can request the same output port of a particular router.
In that case, the employed arbitration policy uses some criteria
to select a winner from the competitors. However, different
packets travelling through the underlying NoC can have a
very different impact on their application’s performance. For
example, some packets may be more critical and can not be
delayed as they stall execution in the processor, whereas others
may tolerate delay as their latency is hidden by the outstanding
latency of their predecessors. We propose techniques and
optimisations to make the routing and arbitration policy aware
of the criticality of packets for better decision making.

B. Motivation

We consider a metric from the literature called slack that
represents the relative importance (criticality) of packets [17].
Specifically, the slack of a packet is the number of cycles
that packet can be delayed in the NoC without impacting
the execution of the processor. Lower slack packets are more
critical than higher slack packets, whereas no-slack packets are
most critical. An existing work prioritises lower slack packets
over higher slack packets but does not deal with the no-slack
packets [17]. We observe that due to low packet injection rate

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bw
av

es

bz
ip

2

ca
ct

us
A

D
M

ca
lc

ul
ix gc

c

go
bm

k

gr
om

ac
s

hm
m

er
lb

m

le
sl
ie

3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

po
vr

ay

sj
en

g

so
pl

ex

sp
ec

ra
nd

N
u
m

b
er

 o
f 

N
o
-S

la
ck

 P
ac

k
et

s 
(%

)

SPEC CPU2006 Benchmarks

Figure 3: No-slack packets travelling through NoC routers

in modern applications, no-slack packets dominate the NoC
routers. As shown in Figure 3, more than 50% no-slack packets
can be found in most of the SPEC CPU2006 benchmarks.
Since no-slack packets are the most critical ones, their delay
in routers will severely hamper the application’s performance.

C. Proposed Technique

We obtain the slack of travelling packets at run-time by
interacting with the on-chip cache controllers and use this
slack as a priority during routing and arbitration decisions.
We propose multiple techniques and optimisations to prioritise
lower slack packets over their higher counterparts and find
alternate minimal path for no-slack packets [27]. We adopt a
look-ahead routing to facilitate the re-routing of no-slack pack-
ets through the new path. Our proposed prioritisation based
architecture called Slack-Aware Re-routing (SAR) makes sure
that no-slack packets are not delayed in the NoC and reach
their destination at the earliest to resume execution. Compared
to the state-of-the-art Aergia architecture [17], SAR is capable
of significantly improving the overall system performance.

D. Performance Analysis

Usage wait time is the number of cycles a reply packet
waits from its arrival at the destination until being used
(consumed) by the processor. Usage wait time shows how early
or late reply packets reach their destination than necessary.
Figure 2a shows the normalised usage wait time with respect
to the baseline architecture (Round-Robin). The proposed SAR
achieves a significant reduction between 5% to 25% in usage
wait time. Figure 2b shows the normalised network stall time
for the presented workload mixes with respect to the Round-
Robin. Our prioritisation policy in SAR significantly reduces
network stall time by up to 22% over Round-Robin and 18%
over Aergia. While we have a negligible area and leakage



 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

blackscholes

bodytrack
canneal

facesimferre
t

flu
idanimate

fre
qmine

rtv
iew

sw
aptions

barnes

cholesky fftfm
m
lu_cb

lu_ncb

ocean_cp
radix

raytrace

AverageN
o
rm

al
is

ed
 L

1
 C

ac
h
e 

M
is

s 
P

en
al

ty

PARSEC 3.0 and SPLASH-2x Benchmarks

Lower the better

Baseline ER ER-NoC

(a) L1 cache miss penalty

 1

 1.04

 1.08

 1.12

 1.16

blackscholes

bodytrack
canneal

facesimferre
t

flu
idanimate

fre
qmine

rtv
iew

sw
aptions

barnes

cholesky fftfm
m
lu_cb

lu_ncb

ocean_cp
radix

raytrace

Average

N
o
rm

al
is

ed
 S

y
st

em
 S

p
ee

d
u
p

PARSEC 3.0 and SPLASH-2x Benchmarks

Higher the better

Baseline ER ER-NoC

(b) System speedup

Figure 4: Performance of critical word prioritisation

power overhead of 1.70% and 2.10%, respectively, dynamic
power reduces by 7.50% due to performance improvement.

V. CRITICAL WORD PRIORITISATION

A. Introduction

A processor usually requests for a single word called critical
word from the memory hierarchy [38]. When it encounters
an L1 cache miss on the critical word, a data transfer from
the next level of memory is triggered. The smallest unit of
data transfer between different levels of memory is in the
unit of blocks containing multiple words. So, even though
the processor requests a single word, an entire data block
(containing the critical word) is brought from memory as a
packet through the NoC. Transfer bandwidth in NoC is limited
to the channel width called flit (much smaller than a packet,
refer Table 1). Hence, a data block (packet) is divided into
multiple flits and sent to the requester, as shown in green in
Figure 1. The critical word can be in any of the incoming flits
with indefinite delay along the way. We propose techniques
and optimisations to make the routing and arbitration policy
aware of the critical words for better decision making.

B. Motivation

Figure 5 shows the average position of critical word in the
corresponding blocks requested from the L2 cache (LLC) for
PARSEC 3.0 and SPLASH-2x benchmarks. There is a very
interesting trend: the first word is the critical word for most
of the requested blocks. The trend is unusual but not unrea-
sonable, as the existing literature has proof of critical word
regularity [39][40]. Literature also states that it is reasonable
to expect that data in a given region may be accessed in similar
order on multiple occasions. Hence, the first incoming flit
carries the critical word most of the time since it carries the
first two words (refer Table 1) of the requested data block. If
the flit carrying the critical word can be prioritised to minimise
the routing and arbitration delay and reach its destination, the
(stalled) processor can resume its execution at the earliest.

C. Proposed Technique

Two of the most popular memory access optimisations to
reduce miss penalty of the critical word are Early Restart (ER)
and Critical Word First (CWF) [38]. However, they are NoC

 0

 20

 40

 60

 80

 100

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

fa
ce

si
m

fe
rr
et

flu
id

an
im

at
e

fr
eq

m
in

e

rtv
ie

w

sw
ap

tio
ns

ba
rn

es

ch
ol

es
ky ff

t

fm
m

lu
_c

b

lu
_n

cb

oc
ea

n_
cp

ra
di

x

ra
yt

ra
ce

P
o
si

ti
o
n
 o

f 
C

ri
ti

ca
l 

W
o
rd

 i
n
 t

h
e 

B
lo

ck
s 

(%
)

PARSEC 3.0 and SPLASH-2x Benchmarks

W0 W1 W2 W3 W4 W5 W6 W7

Figure 5: Position of critical word in the requested blocks

oblivious and, when employed in NoC based TCMPs, neglect
the concept of flit based discrete transfer and router delay. As
a result, the effectiveness of ER and CWF-like optimisations
is less in modern TCMPs. As shown in Figure 5, since a
majority of the benchmarks have their critical word in the
first flit itself, CWF might not be even necessary. We propose
an NoC-aware ER optimisation where the flits carrying the
critical words are prioritised to reach their destination as soon
as possible [28]. The proposed technique involves dynamic
cooperation between L1 cache controllers, NoC and the LLC
controller to propagate the information about the critical word.

D. Performance Analysis

For the baseline architecture (no-optimisation), L1 cache
miss penalty is defined in Equation (1). Whereas for ER and
ER-NoC, it is defined as the number of cycles required to
receive the critical word while the requested block is brought
into the L1 cache. Figure 4a shows the normalised L1 cache
miss penalty with respect to the baseline. L1 cache miss
penalty directly reflects the effectiveness of the ER-NoC over
others. The proposed prioritisation in ER-NoC significantly
reduces the L1 cache miss penalty by 11%. Figure 4b shows
the normalised system speedup, and as expected, the reduction
in L1 cache miss penalty translates into the improvement of
overall system performance. ER-NoC architecture achieves a
maximum and an average system speedup of 15% and 9%,
respectively. While we have a negligible area and leakage
power overhead of 1.34% and 3.60%, respectively, dynamic
power reduces by 5.85% due to performance improvement.



 0.8

 0.85

 0.9

 0.95

 1

same low med high bla can ded fer str swa AverageN
o
rm

al
is

ed
 L

1
 C

ac
h
e 

M
is

s 
P

en
al

ty

SPEC CPU2006 Benchmark Mixes and PARSEC 3.0 Benchmarks

Lower the better

Baseline
DB-TTBF

DB-MTBF
CDB-TTBF

CDB-MTBF
CDB-ETB-TTBF

CDB-ETB-MTBF

(a) L1 cache miss penalty

 1

 1.04

 1.08

 1.12

 1.16

 1.2

same low med high bla can ded fer str swa Average

N
o
rm

al
is

ed
 S

y
st

em
 S

p
ee

d
u
p

SPEC CPU2006 Benchmark Mixes and PARSEC 3.0 Benchmarks

Higher the better

Baseline
DB-TTBF

DB-MTBF
CDB-TTBF

CDB-MTBF
CDB-ETB-TTBF

CDB-ETB-MTBF

(b) System speedup

Figure 6: Performance of opportunistic caching

VI. OPPORTUNISTIC CACHING

A. Introduction

Due to limited on-chip caching, applications with large
memory footprint encounter frequent data misses. Such ap-
plications suffer from recurring miss penalty when they re-
reference recently evicted cache blocks. On the other side,
due to the very low packet injection rate of only around 5%
in modern applications [41][42][43], and post-silicon debug
and validation, a lot of NoC resources remain underutilised or
even worse, unused. We propose techniques and optimisations
to exploit these available resources and accommodate evicted
cache blocks in the routers to service future references quickly.

B. Exploiting Underutilised Router Buffers

1) Motivation: To maintain the worst-case performance
bandwidth and scalability, NoC routers are provisioned with
input port buffers [44][45], which are further divided into
Virtual Channels (VCs) for deadlock-free routing and better
utilisation [46]. As shown in Figure 1, packets entering through
different input ports (east, south, west, north, and local) get
temporarily stored in the available VCs and take part in routing
and arbitration decisions. However, due to the low packet
injection rate, VCs are underutilised and remain free most of
the time. VC availability in local input port of routers is shown
in Figure 7 for different SPEC CPU2006 benchmarks. Since
these benchmarks have an average packet injection rate of only
around 5%, at least one VC always remain free (≈ 95%).

2) Proposed Technique: We propose to store evicted cache
blocks in underutilised VCs without hampering the usual NoC
transfer [29][30]. Such a block can either be clean or dirty,
where the former is discarded while the latter is sent to the
next level of memory for write-back. We store the evicted,
dirty cache blocks in the local input port VCs on their way
for the write-back. When they are re-referenced, we arrange
a local reply with the matching stored block from the routers.
Local reply completely avoids the NoC and off-chip travel and
significantly reduces miss penalty, and improves performance.
We also bring some evicted, clean cache blocks to the routers
(which are otherwise discarded) and store them in the local
input port VCs to increase our chances of a local reply.

C. Exploiting Unused Trace Buffers

1) Motivation: When we bring evicted, clean cache blocks
to be stored in the routers to increase our chances of local
reply, they compete against the evicted, dirty cache blocks

 94.3

 94.4

 94.5

 94.6

 94.7

 94.8

as
ta

r

ca
ct

us
A

D
M

G
em

sF
D

TD

gr
om

ac
s

h2
64

re
f

hm
m

er
lb

m

le
sl
ie

3d

na
m

d

om
ne

tp
p

pe
rlb

en
ch

sj
en

g

so
pl

ex

sp
hi

nx

xa
la

nc
bm

k

A
ve

ra
ge

V
C

 A
v
ai

la
b
il

it
y
 i

n
 L

o
ca

l 
In

p
u
t 

P
o
rt

 (
%

)

SPEC CPU2006 Benchmarks

Figure 7: VC availability in local input port of NoC routers

for a place. Input port VCs are underutilised, but they are
also limited in numbers. Thus the competition between clean
and dirty defeats the purpose of accommodating more evicted
cache blocks. Due to the design complexity of NoC based
TCMPs, post-silicon debug is practised to validate a design
before going into production. An important phase of the debug
involves validating the on-chip interaction between cores.
To aid the process, Design-for-Debug (DfD) hardware are
embedded across various modules and cores in a TCMP [47].
Trace Buffers are such a DfD hardware embedded in routers.
However, when a design goes into production, most of the
DfD hardware become non-functional and are left unused.

2) Proposed Technique: Similar to the input port VCs, the
trace buffers are already present in the routers; hence they
do not contribute to on-chip area overhead. We re-purpose
them to store evicted, clean cache blocks [31][32]. With the
dirty blocks stored in input port VCs and the clean blocks
stored in embedded trace buffers, we are able to accommodate
more evicted cache blocks, which increases our chances of
local reply. We also propose two techniques to forward stored,
dirty cache blocks for write-back towards their respective
destination and a technique to drop stored, clean cache blocks
from the trace buffers. To preserve the state of evicted blocks
and maintain coherence, we propose an additional coherence
message. Our proposed technique is able to significantly
reduce miss penalty and improve overall system performance.

D. Performance Analysis

L1 cache miss penalty directly reflects the effectiveness of
the proposed local store and reply optimisation. Figure 6a
shows the normalised L1 cache miss penalty with respect to
the baseline architecture (no-optimisation). With local replies,
the proposed architectures reduce the L1 cache miss penalty
for all the simulated workload mixes. A maximum reduction of
21% and an average reduction of 16% is achieved. Figure 6b



shows the normalised system speedup with respect to the
baseline, where the improvement is intuitive due to reduced
miss penalty. We achieve a maximum and average system
speedup of 19% and 14%, respectively. Intelligent usage of
trace buffers in the proposed architectures significantly im-
proves overall system performance with frequent local replies
from the routers. While we have a negligible area and leakage
power overhead of 2.58% and 3.94%, respectively, dynamic
power reduces by 6.12% due to performance improvement.

VII. FUTURE RESEARCH DIRECTIONS

The future is moving towards domain-specific, heteroge-
neous architectures, and NoC will be required to smoothly
integrate specific Intellectual Property (IP) cores from diverse
domains. One way of looking into improving our packet
prioritisation technique will be to get the criticality metric from
the IP cores, as they might have specific QoS requirements.
Hence, a hardware-software co-design may be explored. An-
other possible way to extend our technique is by considering
different routing algorithms for different VCs within the same
input port. This will reduce the conflict between packets.

The number of processing cores is massively increasing in
Domain-Specific Architectures (DSAs), and they have frequent
memory interactions. If processing cores only need the critical
word to continue their execution, NoC channel bandwidth
can be divided among all the competitors to transfer multiple
critical words to different cores rather than sending the entire
block. This could be one possible way of extending our critical
word prioritisation technique for DSAs. Another possible
extension could be in the line of NoC traffic compression.

Our work on opportunistic caching can be extended to
store pre-fetched blocks to avoid cache pollution. It may also
be explored for Non-Volatile Memories (NVMs) to reduce
expensive writes and increase their lifetime. As we advocate
for the design of data-aware NoC, emerging technologies like
wireless and photonic NoC (WiNoC and ONoC) provide even
better scope. One such example is the design of coherence
protocols by taking advantage of the WiNoC. Neuromorphic
architectures like Spiking Neural Network (SNN) use NoC for
scalability. They exhibit higher memory interactions, where
designing data-aware NoC might become a game-changer.

REFERENCES

[1] G. E. Moore, “Cramming More Components onto Integrated Circuits,”
Electronics, 1965.

[2] R. H. Dennard et al., “Design of Ion-Implanted MOSFET’s with Very
Small Physical Dimensions,” IEEE JSSC, 1974.

[3] D. W. Wall, “Limits of Instruction-Level Parallelism,” in ASPLOS, 1991.
[4] (2015) International Technology Roadmap for Semiconductors (ITRS).

[Online]. Available: https://tinyurl.com/2015-itrs-report
[5] (2017) Intel Xeon Phi Processors. [Online]. Available: https://tinyurl.

com/intel-xeon-phi-processors
[6] (2021) AMD EPYC Processors. [Online]. Available: https://tinyurl.

com/amd-epyc-processors
[7] (2021) Ampere Altra Processors. [Online]. Available: https://tinyurl.

com/ampere-altra-processors
[8] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip

Inteconnection Networks,” in DAC, 2001.
[9] D. Sanchez et al., “An Analysis of On-Chip Interconnection Networks

for Large-Scale Chip Multiprocessors,” ACM TACO, 2010.

[10] H. Farrokhbakht et al., “SMART: A Scalable Mapping and Routing
Technique for Power-Gating in NoC Routers,” in NOCS, 2017.

[11] H. E. Mizrahi et al., “Introducing Memory into the Switch Elements of
Multiprocessor Interconnection Networks,” in ISCA, 1989.

[12] N. Eisley et al., “In-Network Cache Coherence,” in MICRO, 2006.
[13] A. Yanamandra et al., “In-Network Caching for Chip Multiprocessors,”

in HiPEAC, 2009.
[14] L. Huang, “Leveraging On-Chip Networks for Efficient Prediction on

Multicore Coherence,” in DATE, 2014.
[15] Y. Yao and Z. Lu, “iNPG: Accelerating Critical Section Access with

In-Network Packet Generation for NoC Based Many-Cores,” in HPCA,
2018.

[16] R. Das et al., “Application-Aware Prioritization Mechanisms for On-
Chip Networks,” in MICRO, 2009.

[17] R. Das et al., “Aérgia: Exploiting Packet Latency Slack in On-Chip
Networks,” in ISCA, 2010.

[18] R. Das et al., “Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems,” in HPCA, 2013.

[19] J. S. Miguel and N. E. Jerger, “Data Criticality in Network-on-Chip
Design,” in NOCS, 2015.

[20] Z. Li et al., “The Runahead Network-on-Chip,” in HPCA, 2016.
[21] A. Das, “Designing Data-Aware Network-on-Chip for Performance,”

Ph.D. dissertation, Indian Institute of Technology (IIT) Guwahati, 2021.
[22] A. Glew, “MLP yes! ILP no!” in ASPLOS WACI, 1998.
[23] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Schedul-

ing for Chip Multiprocessors,” in MICRO, 2007.
[24] C. Kim et al., “An Adaptive, Non-Uniform Cache Structure for Wire-

Delay Dominated On-Chip Caches,” in ASPLOS, 2002.
[25] D. Lo et al., “Towards Energy Proportionality for Large-Scale Latency-

Critical Workloads,” in ISCA, 2014.
[26] L. A. Barroso et al., The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines, 2nd ed. Morgan & Claypool
Publishers, 2013.

[27] A. Das et al., “Critical Packet Prioritisation by Slack-Aware Re-routing
in On-Chip Networks,” in NOCS, 2018.

[28] A. Das et al., “Data Criticality in Multi-Threaded Applications: An
Insight for Many-Core Systems,” IEEE TVLSI, 2021.

[29] A. Das et al., “Reducing Off-Chip Miss Penalty by Exploiting Under-
utilised On-Chip Router Buffers,” in ICCD, 2020.

[30] A. Das et al., “Revising NoC in Future Multi-Core based Consumer
Electronics for Performance,” IEEE CEM, 2021.

[31] A. Das et al., “Exploiting On-Chip Routers to Store Dirty Cache Blocks
in Tiled Chip Multi-Processors,” in ISVLSI, 2020.

[32] A. Das et al., “Opportunistic Caching in NoC: Exploring Ways to
Reduce Miss Penalty,” IEEE TC, 2021.

[33] N. Binkert et al., “The gem5 Simulator,” ACM SIGARH CAN, 2011.
[34] (2017) Intel Xeon Phi Processor 7235. [Online]. Available: https:

//tinyurl.com/intel-7235-processor
[35] A. B. Kahng et al., “ORION 2.0: A Fast and Accurate NoC Power and

Area Model for Early-Stage Design Space Exploration,” in DATE, 2009.
[36] C. Sun et al., “DSENT - A Tool Connecting Emerging Photonics with

Electronics for Opto-Electronic NoC Modeling,” in NOCS, 2012.
[37] S. Li et al., “McPAT: An Integrated Power, Area, and Timing Modeling

Framework for Multicore and Manycore Arch.” in MICRO, 2009.
[38] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach, 6th ed. Elsevier, 2017.
[39] E. J. Gieske, “Critical Words Cache Memory,” Ph.D. dissertation,

University of Cincinnati (UC), 2008.
[40] N. Chatterjee et al., “Leveraging Heterogeneity in DRAM Main Mem-

ories to Accelerate Critical Word Access,” in MICRO, 2012.
[41] N. Barrow-Williams et al., “A Communication Characterisation of

Splash-2 and Parsec,” in IISWC, 2009.
[42] P. Gratz and S. W. Keckler, “Realistic Workload Characterization and

Analysis for Networks-on-Chip Design,” in CMP-MSI, 2010.
[43] R. Hesse et al., “Fine-Grained Bandwidth Adaptivity in Networks-on-

Chip using Bidirectional Channels,” in NOCS, 2012.
[44] G. Michelogiannakis et al., “Evaluating Bufferless Flow Control for On-

Chip Networks,” in NOCS, 2010.
[45] B. K. Daya et al., “Quest for High-Perf Bufferless NoCs with Single-

Cycle Express Paths and Self-Learning Throttling,” in DAC, 2016.
[46] W. Dally and C. Seitz, “Deadlock-Free Message Routing in Multipro-

cessor Interconnection Networks,” IEEE TC, 1987.
[47] B. Vermeulen and S. K. Goel, “Design for Debug: Catching Design

Errors in Digital Chips,” IEEE D&T, 2002.

https://tinyurl.com/2015-itrs-report
https://tinyurl.com/intel-xeon-phi-processors
https://tinyurl.com/intel-xeon-phi-processors
https://tinyurl.com/amd-epyc-processors
https://tinyurl.com/amd-epyc-processors
https://tinyurl.com/ampere-altra-processors
https://tinyurl.com/ampere-altra-processors
https://tinyurl.com/intel-7235-processor
https://tinyurl.com/intel-7235-processor

	Introduction
	Data-Aware Network-on-Chip
	Evaluation Methodology
	Simulation Infrastructure
	Performance Metrics

	Critical Packet Prioritisation
	Introduction
	Motivation
	Proposed Technique
	Performance Analysis

	Critical Word Prioritisation
	Introduction
	Motivation
	Proposed Technique
	Performance Analysis

	Opportunistic Caching
	Introduction
	Exploiting Underutilised Router Buffers 
	Motivation
	Proposed Technique

	Exploiting Unused Trace Buffers
	Motivation
	Proposed Technique

	Performance Analysis

	Future Research Directions
	References

