
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 00, NO. 00, MONTH 0000 1

Data Criticality in Multi-Threaded Applications:
An Insight for Many-Core Systems

Abhijit Das, Student Member, IEEE, John Jose, Member, IEEE, and Prabhat Mishra, Fellow, IEEE

Abstract—Multi-threaded applications are capable of exploit-
ing the full potential of many-core systems. However, Network-
on-Chip (NoC) based inter-core communication in many-core
systems is responsible for 60-75% of the miss latency experienced
by multi-threaded applications. Delay in the arrival of critical
data at the requesting core severely hampers performance. This
brief presents some interesting insights about how critical data is
requested from the memory by multi-threaded applications. Then
it investigates the cause of delay in NoC and how it affects the
performance. Finally, this brief shows how NoC-aware memory
access optimisations can significantly improve performance. Our
experimental evaluation considers Early Restart memory access
optimisation and demonstrates that by exploiting available NoC
resources, critical data can be prioritised to reduce miss penalty
by 11% and improve overall system performance by 9%.

Index Terms—Data criticality, multi-threaded applications,
many-core systems, network-on-chip (NoC), miss penalty.

I. INTRODUCTION

APPLICATIONS running in any computing device can be
classified as either multi-programmed or multi-threaded.

Many-core systems have made way for applications with
massive processing requirements, something which was not
possible earlier. The processing power of many-core systems
come from a collection of relatively simpler processing cores,
unlike a single powerful core in uni-core systems. Hence, to
exploit the full potential of many-core systems, applications
need to be parallel, thus multi-threaded. There are promis-
ing approaches for automatic program parallelisation [1] and
many-core aware mapping of multi-threaded applications [2].
Modern many-core systems employ Network-on-Chip (NoC)
based inter-core communication, and it is reported that NoC is
responsible for 60–75% of the miss latency in multi-threaded
applications [3]. Delay in arrival of the critical data at the
requesting core hampers performance of such applications.
Hence, it is very important to get an insight into how multi-
threaded applications request critical data and how NoC con-
tributes to the miss latency (penalty) of such applications.

While running an application, a core usually requests for a
single word from memory, called critical word [4]. The critical
word is first searched in the cache memory and returned
to the core if found. However, if the word is not found in

Manuscript received Month 00, 0000; revised Month 00, 0000; accepted
Month 00, 0000. Date of publication Month 00, 0000; date of current version
Month 00, 0000. (Corresponding author: Abhijit Das.)

A. Das and J. Jose are with the Department of Computer Science and
Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
(e-mail: abhijit.das@iitg.ac.in; johnjose@iitg.ac.in).

P. Mishra is with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611, USA.

This work was partially supported by the NSF grant SaTC-1936040.

0

NoC

MC

MCMC

MC

PEPE R R

PE

PE

PE

PE

PE

R

PE

PEPE

R

R R R

R

R

RR

.

.

.

.

.

.

.

.

.

.

.

.

W0
W1
W2
W3
W4
W5
W6
W7

W0
W1
W2
W3
W4
W5
W6
W7

N-1

W0
W1
W2
W3
W4
W5
W6
W7

1

T

B2

B1

B0H

Processor

L1 D

NIC

L1 I
L2 Bank

(LLC)

R

H B0 B1 B2 T

Figure 1: Conceptual view of an NoC based many-core system.
Due to limited transfer bandwidth, a packet in NoC is divided
into multiple smaller units called flits. A request packet
consists of a single head flit (H), whereas a reply packet
consists of a head flit followed by multiple body flits and
ended with a tail flit (H, B0, B1, B2, T). Flits of a particular
packet always travel in order. A critical word (W3) and the flit
carrying that critical word (B1) are shown in red. The request
and reply paths are shown in blue and green, respectively.

the cache, it is requested from the next level of memory.
The smallest unit of data transfer between different levels of
memory is in blocks, containing multiple words. So, even
though the core requests a single word, a complete block
(containing the critical word) is brought from the next level of
memory in the form of a packet through the underlying NoC.
Nevertheless, data transfer bandwidth in NoC is limited to
channel width called flit. A data block (packet) is divided into
multiple flits (flit << block) and sent in sequence, as shown in
Figure 1. The critical word can be in any of the incoming flits
and accordingly impact the performance. On their way, flits
experience indefinite router delays due to congestion, which
impact their arrival on the requesting core, again hampering
the performance. Due to the usage of relatively simpler pro-
cessing cores, modern many-core systems cannot hide the miss
penalty by out-of-order (OoO) execution and memory level
parallelism (MLP) beyond a point, and thus get stalled.

The purpose of this brief is to share some interesting
insights about running multi-threaded applications in many-
core systems. It specifically presents the pattern of critical
words requested from the memory. Then it describes the
pattern of delays experienced by the flits while travelling from
source to their destination. The brief finally shows how using
these insights can significantly improve the performance of
existing optimisations on miss penalty reduction. Specifically,
this brief makes the following major contributions:

1) In a unique profiling, it presents the position of critical

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 00, NO. 00, MONTH 0000 2

 0

 20

 40

 60

 80

 100

blackscholes

bodytrack
canneal

facesim ferret

fluidanimate

freqmine
rtview

swaptions
barnes

cholesky fft fmm
lu_cb

lu_ncb

ocean_cp
radix

raytrace

Po
sit

io
n

of
 C

rit
ic

al
 W

or
d

in
 th

e B
lo

ck
s (

%
)

PARSEC 3.0 and SPLASH-2x Benchmarks

W0 W1 W2 W3 W4 W5 W6 W7

Figure 2: Position of critical word in the requested blocks

 0

 10

 20

 30

 40

 50

 60

PARSEC-3.0 SPLASH-2xT
im

e
b/

w
 F

ir
st

 a
nd

 L
as

t F
li

t (
C

yc
le

s)

Minimum Average Maximum

Figure 3: Reply Difference Time

word within the requested block and corresponding flits
for PARSEC 3.0 [5] and SPLASH-2x [6] benchmarks.

2) It describes the difference in arrival times of the first and
last flit of an incoming data block and how it impacts
the performance of the underlying applications.

3) It proposes a modified version of the popular Early
Restart optimisation [4] by considering the insights from
(1) and (2), which performs better than the original.

II. DATA CRITICALITY IN APPLICATIONS

In a multi-threaded application, multiple tasks (threads)
may run concurrently and independently by using the shared
resources. This is the reason why multi-threaded applications
utilise the resources of many-core systems better. Most of
the modern many-core systems have private L1 caches and
a shared L2 cache, which is divided into multiple banks and
distributed across all the cores [7][8][9], as shown in Figure 1.
When the critical word is not found in the L1 cache (miss), the
core requests the word from the corresponding L2 cache bank.
The entire block containing the critical word is transferred
from L2 to L1 cache (refer Figure 1). In a conventional system,
even though the core requires only the critical word to resume
its execution, it is made to wait till the arrival of the entire
block. We know that a block contains multiple words, so
imagine a scenario where the very first word of the block
is the critical word. The core could resume its execution after
the arrival of the first word, but instead, it needs to wait till the
last word of the block. Hence we are motivated to profile state-
of-the-art multi-threaded applications to know the pattern in
which critical words are spread in their requested blocks. This
insight will help us to understand how popular memory access
optimisations like Early Restart and Critical Word First [4]
can benefit the corresponding applications (Section III).

We profile PARSEC 3.0 [5] and SPLASH-2x [6], the two
most popular suite of multi-threaded benchmarks. We model
an equivalent implementation of Intel Xeon Phi Processor
7235 [10], one of the latest many-core systems, on gem5
simulator [11]. Our system configuration is given in Table 1 for
reference. We profile those data requests for whom the critical
word was not found in the L1 cache. These are the requests
that travel through the underlying NoC to reach L2 cache bank
and get data, thus suffers NoC related delay [3]. To the best of
our knowledge, this critical word based profiling is a first of its
kind for any multi-threaded applications. Figure 2 shows the
average position of critical word in the corresponding blocks
requested from L2 cache. For example, during the entire run of
blackcholes benchmark from PARSEC 3.0 suite, for 67.20% of
the time, the first word (W0) is the critical word, for 3.17%
of the time, the second word (W1) is the critical word and

Table 1: System configuration

Processor 64 OoO x86 cores, 1.3GHz
L1 Cache 32KB, 8-way, private, split

L2 Cache (LLC) 512KB×64 cores, 16-way, shared
Memory Bank 4; one located at each corner

NoC

8×8 2D-Mesh topology, 128-bit channel
3 Virtual Networks (VNs), VN0, VN1, VN2
3 Virtual Channels (VCs) per VN
1-flit depth control VC, 4-flit depth data VC

Routing 2-stage routers (1.54ns), XY-DOR algorithm
VC based wormhole packet-switching

Packets 1-flit for control packet, 5-flit for data packet
Word/Flit/Block 64-bit/128-bit/64B; 2-words/flit, 8-words/block

Benchmarks PARSEC 3.0 and SPLASH-2x (multi-threaded)

so on. There is a very interesting trend: the first word is the
critical word for most of the requested blocks. This pattern is
observed for the majority of the benchmarks of both PARSEC
3.0 and SPLASH-2x suites even though they are from diverse
domains, including physics, finance, etc. However, the trend
is unusual but not unreasonable, as the existing literature has
proof of critical word regularity [12][13]. Literature states that
it is reasonable to expect that data in a given region may be
accessed in similar order on multiple occasions.

While explaining the individual memory access patterns
for each of the benchmarks is beyond the scope of this
brief, we give some common characteristics that justify the
pattern on the location of a critical word. Benchmarks that
traverse through data arrays exhibit critical words near the
beginning of the data block, most often to word 0 (W0).
Also, the benchmarks having strided access with the smallest
stride length of 0 have W0 as the critical word. Nevertheless,
there are also benchmarks like canneal and radix, where the
critical word is somewhat uniformly distributed. Benchmarks
whose memory accesses are generated due to pointer chasing
exhibits better distribution of the critical word. Based on
these observations, specific memory access optimisation can
be implemented for a class of applications exhibiting a specific
behaviour to reduce the miss penalty of the critical word.

III. CRITICALITY AWARE MANY-CORE SYSTEMS

Two of the most popular memory access optimisations to
reduce miss penalty of the critical word in modern many-core
systems are Early Restart and Critical Word First [4]. In Early
Restart, as soon as the critical word is received at the L1 cache,
it is forwarded to the processor to resume its execution without
waiting for the entire block. In Critical Word First, the critical
word is forwarded out of order by the L2 cache to be received
as the first word in the L1 cache to resume processor execution
at the earliest. In NoC based many-core systems, everything

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 00, NO. 00, MONTH 0000 3

Table 2: Position of critical word in the corresponding flits.
Note that head flit (H) does not carry any words of the data
block and hence its corresponding column is left empty.

Suite Benchmark Flits of an incoming requested block

H B0 B1 B2 T

1

PARSEC 3.0

blackscholes 70.37 11.94 7.95 9.74
2 bodytrack 45.90 17.91 17.38 18.81
3 canneal 54.49 17.20 13.38 14.93
4 facesim 82.06 7.06 5.40 5.48
5 ferret 67.60 15.04 8.56 8.80
6 fluidanimate 67.47 14.34 8.23 9.96
7 freqmine 57.50 13.67 12.32 16.51
8 rtview 45.59 20.08 16.26 18.07
9 swaptions 56.33 14.21 14.04 15.42

10

SPLASH-2X

barnes 43.70 14.69 19.40 22.21
11 cholesky 67.19 12.27 10.26 10.28
12 fft 39.10 14.69 7.14 39.07
13 fmm 50.46 15.19 13.94 20.41
14 lu cb 70.99 6.37 4.32 18.32
15 lu ncb 58.41 34.25 3.70 3.64
16 ocean cp 58.96 14.35 13.27 13.42
17 radix 37.68 22.81 15.47 24.04
18 raytrace 45.03 22.51 24.03 8.43

Average 56.60 16.03 11.95 15.42

travel as packets (including data blocks), which are further
divided into multiple flits. A head flit (H) carries the packet
(message) header containing the routing information and does
not carry any part of the data block. Multiple body flits (Bi),
ended with a tail flit (T) carries the data block from source to
the destination. Hence, a data block (of 8-words, refer Table 1)
is transferred as a sequence of head flit, followed by three body
flits (of 2-words each) and a tail flit (of 2-words) (H, B0, B1,
B2, T). Table 2 presents the percentage of critical words that
fall on different flits of a requested data block.

To understand the observation in Table 2, when a requested
data block in blackscholes benchmark is transferred through
flits, 70.37% of the time, critical words are in flit B0, 11.94%
in flit B1, 7.95% in flit B2 and 9.74% in the tail flit T. It can
be seen that the first body flit (B0) contains the critical words
most of the time. It was evident from the fact that most of the
critical words are the first word of a data block (refer Figure 2),
and B0 carries the first two words of the block. Hence, Early
Restart can be very effective in these kinds of applications.
Critical Word First involves sending the critical word in the
first flit by allowing out of order travel. Since by their very
nature, the majority of the applications have their critical word
in the first flit itself, Critical Word First might not be required.
Avoiding Critical Word First also brings in the advantage of
avoiding the complexity of sending the critical word out of
order and then reordering the words at their destination.

Both Early Restart and Critical Word First are oblivious of
the underlying on-chip communication infrastructure. These
optimisations were introduced in the era of bus based on-
chip communication, where a data block is transferred as a
continuous stream of words. So, the block is transferred within
a fixed time, and the core could resume execution at the earliest
as per the optimisation. However, modern many-core systems
use NoC based on-chip communication where the data block
is transferred as multiple flits in a discrete fashion. On their
way to the destination, flits experience indefinite router delay

due to on-chip congestion. Hence, the effectiveness of Early
Restart and Critical Word First reduces in many-core systems.

To understand about the delay experienced by incoming
flits, we conduct an experimental analysis for all the PARSEC
3.0 and SPLASH-2x benchmarks, as given in Figure 3. We
consider a metric called Reply Difference Time (RDT) [14],
which calculates the difference between the arrival of the first
flit and last flit of a data block in the requesting core. The
minimum RDT remains 4 for both PARSEC 3.0 and SPLASH-
2x benchmarks. It implies that all the flits reach back to back
without any delay (ideal case). However, the maximum RDT
is surprisingly high (during congestion): 39 for PARSEC 3.0
and 59 for SPLASH-2x benchmarks. Even the average RDT
is 8.01 and 7.98, more than the minimum RDT meaning, flits
are generally getting delayed. Any of the flits (including the
one carrying the critical word) may be indefinitely delayed
and hamper the performance. If memory access optimisations
are made aware of the pros and cons of the underlying on-
chip communication infrastructure, they may yield even better
benefits. The purpose of this brief is not to provide NoC-
aware implementations of all the existing critical word based
memory access optimisations. Instead, we take just one of the
most popular memory access optimisations, Early Restart, and
demonstrate that an NoC-aware Early Restart is effective in
significantly improving the overall system performance.

IV. NOC-AWARE EARLY RESTART OPTIMISATION

This section proposes an NoC-aware Early Restart optimi-
sation in many-core systems based on the observations from
Figure 2, Table 2 and Figure 3. For the ease of illustration,
we call the original Early Restart optimisation as ER and our
proposed version of NoC aware Early Restart as ER-NoC.

A. Critical Flit Identification

When the core (processor) needs a critical word, it sends
a request to the L1 cache controller (L1 CTLR), giving the
address of the data block which contains the word. L1 CTLR
maps into the corresponding set using the set index bits of
the requested address, as shown in Figure 4. After the set is
identified, L1 CTLR checks the tag bits for hit/miss detection.
The corresponding data lookup is also done in parallel to
reduce memory access latency. If the tag checker returns true
(cache hit), the requested block is present in the L1 cache.
L1 CTLR identifies the critical word using the offset bits of
the address and sends it to the processor. If the tag checker
returns false (cache miss), the block needs to be brought from
the corresponding L2 cache bank through the underlying NoC.
While the block is being fetched, ER optimisation uses the
offset bits to check for the arrival of the critical word. As
soon as the critical word is fetched at L1 cache, it is sent
to the processor to resume its execution, without waiting for
the arrival of the entire block. While the execution continues,
remaining words of the block are fetched in the background.
Since data transfer is still performed at block-level granularity,
the underlying cache coherence remains unaffected.

We define critical flit as the flit carrying the critical word of
the block through the underlying NoC. The proposed ER-NoC

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 00, NO. 00, MONTH 0000 4

n X 1 MUX

L1 Cache

Data
. . .

W2
W3
W4
W5
W6
W7

W0 W1 W7
States

. . .
W2
W3
W4
W5
W6
W7

V D
Tag

. . .
W2
W3
W4
W5
W6
W7

Way 0

Data
. . .

W2
W3
W4
W5
W6
W7

W0 W1 W7
States

. . .
W2
W3
W4
W5
W6
W7

V D
Tag

. . .
W2
W3
W4
W5
W6
W7

Way n

. . .

SE
T

IN
D

EX
TA

G
O

FF
SE

T

A
d

d
re

ss
 f

ro
m

 P
ro

ce
ss

o
r

=

DATAPRIORITY HIT / MISS

=

.

. . .

OFFSET %
FLIT SIZE

Figure 4: Modified L1 cache controller

optimisation adds a tiny module at L1 CTLR to identify the
critical flit, as shown in red in Figure 4. This module takes
as input the offset bits and flit size to return a 2-bit value
(00/01/10/11) called critical flit identifier (CFI). If the CFI
value is 00, it means that the critical word will be transferred
in the body flit B0, if 01 then B1, if 10 then B2 and if 11
then in the tail flit T. The proposed module added in L1 CTLR
to get CFI runs in parallel with tag checker and data lookup
modules and hence does not incur any additional delay in
memory access latency. If the tag checker returns true, the CFI
value is ignored as the requested block is already in L1 cache,
and there will be no flit transfer. However, if the tag checker
returns false, the CFI value is added to the message/packet
header when the block request is sent to the L2 cache bank.

B. Critical Flit Prioritisation

Upon receiving the request, the L2 cache bank controller
(L2 CTLR) replies with the data block as multiple flits through
the underlying NoC. For the proposed ER-NoC optimisation,
L2 CTLR puts the corresponding CFI value back into the
packet header (H) of the reply. When the head flit traverse
through the NoC routers, the CFI values are stored in a counter
C in each router, as shown in Figure 5. ER-NoC modifies
the traditional round-robin based priority policy to use C for
priority during routing and arbitration. The motive behind this
move is to reduce the router delay for critical flits to reach the
destination at the earliest. It is employed after learning about
the experienced RDT due to on-chip network congestion (refer
Figure 3). However, with priority, there is always a risk of
starvation for lower priority flits. To minimise such a risk, our
policy does not prioritise all the flits of a data block; rather, it
just prioritises up to the critical flit. For example, if the critical
flit is B1 for a data block, our proposed policy just prioritises
B0 and B1. This is done as all the flits preceding the critical
flit of the block should reach L1 cache at the earliest, then only
the critical flit will reach. Once the critical flit is prioritised,
the succeeding flits (B2 and T) can reach L1 cache at their
own pace as they are not required to resume execution.

When two flits of two different data blocks compete for the
same output port, one with the lower CFI counter C is priori-
tised. When a flit wins the arbitration, the corresponding C is
decremented by 1. This way, when the critical flit reaches a
router, the counter C becomes 0, meaning the highest priority.
Hence the proposed policy prioritises only and until critical
flit of a data block. Exploiting NoC infrastructure to prioritise

R: Router

Crossbar

North
PE

West
South
East

North

Input Unit

VC 3

VC 2

VC 1

VC 0

PE

West
South

East

Switch Allocator
(SA)

VC Allocator
(VA)

Credits
Credits

Route Compute
(RC)

CT B1 B0 H

C

C

C

R

PE

R

R

R

Figure 5: Modified router microarchitecture

based on data criticality reduces miss penalty and improves
overall system performance. This brief does not claim that the
proposed priority policy gives the lowest starvation and best
performance. The purpose is to show that it is beneficial to
make existing ER like memory access optimisations aware of
the NoC infrastructure in NoC-based many-core systems.

C. Experimental Evaluation

We consider the following architectures for evaluation:
• Baseline: Without any optimisation.
• ER: Original Early Restart optimisation.
• ER-NoC: Proposed Early Restart optimisation.

All the architectures are modelled on event-driven gem5
simulator and the system configuration is already given in
Table 1. We modify MOESI CMP directory protocol in Ruby
inside gem5 to implement the proposed cache controllers. We
modify GARNET inside gem5 to implement the proposed
router microarchitecture. We run gem5 in full-system (FS)
mode to collect the results. Each multi-threaded benchmark
runs 64 threads in 64 different cores of the system. We use
sim-medium [5] input set and report the results for the run of
entire region-of-interest. We consider miss penalty and system
speedup as the performance metrics for evaluation. All the
results are normalised with respect to the Baseline architecture.
L1 Cache Miss Penalty: For Baseline architecture, it is
the number of cycles required to bring a requested data
block (containing the critical word) in L1 cache. In case of
ER and ER-NoC architectures, it is the number of cycles
required to receive the critical word while the requested data
block is brought in L1 cache. Miss penalty directly reflects
the effectiveness of the proposed ER-NoC. Figure 6 shows
the normalised L1 cache miss penalty for PARSEC 3.0 and
SPLASH-2x benchmarks. Since Baseline resumes execution
only after the entire data block is received, and average RDT
is quite high (refer Figure 3), miss penalty is more. The
experienced RDT is due to on-chip congestion, which also
affects the effectiveness of the existing ER. By exploiting
the insights about the position of critical word (Figure 2
and Table 2) and RDT due to congestion (Figure 3), our
prioritisation scheme in the proposed ER-NoC significantly
reduces miss penalty by 11%. Our prioritisation scheme is
not optimal as we can see it performs poorly for blackscholes
when compared to ER. For more than 70% of the time, critical
words are in the first body flit B0 for blackscholes (refer
Table 2). Also, it is one of the simplest benchmarks with a very

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 00, NO. 00, MONTH 0000 5

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

blackscholes

bodytrack
canneal

facesimferre
t

flu
idanimate

fre
qmine

rtv
iew

sw
aptions

barnes

cholesky fftfm
m
lu_cb

lu_ncb

ocean_cp
radix

raytrace

AverageN
or

m
al

is
ed

 L
1

C
ac

he
 M

is
s

P
en

al
ty

PARSEC 3.0 and SPLASH-2x Benchmarks

Lower the better

Baseline ER ER-NoC

Figure 6: L1 Cache Miss Penalty

 1

 1.04

 1.08

 1.12

 1.16

blackscholes

bodytrack
canneal

facesimferre
t

flu
idanimate

fre
qmine

rtv
iew

sw
aptions

barnes

cholesky fftfm
m
lu_cb

lu_ncb

ocean_cp
radix

raytrace

Average

N
or

m
al

is
ed

 S
ys

te
m

 S
pe

ed
up

PARSEC 3.0 and SPLASH-2x Benchmarks

Higher the better

Baseline ER ER-NoC

Figure 7: System Speedup

 1

 1.03

 1.06

 1.09

N
or

m
al

is
ed

 S
ys

te
m

 S
pe

ed
up

PARSEC 3.0 and SPLASH-2x Benchmarks

Higher the better

Baseline
ER

ER-NoC
ER-NoC-64

Figure 8: Sensitivity

small working set and negligible communication. Hence, the
over-ambitious scheme to prioritise critical words during on-
chip congestion is unnecessary. The presence of the scheme in
ER-NoC delays routing and arbitration, thus performing poorly
with respect to ER for blackscholes. However, the focus is not
to propose an optimal prioritisation scheme, rather highlighting
the optimisation opportunities by exploiting the insights.
System Speedup: System speedup (S) is given by,
S = ExecTimebaseline

ExecTimeproposed
, where ExecT imebaseline and

ExecT imeproposed are the execution time of Baseline and
proposed architectures, respectively. Figure 7 shows the nor-
malised system speedup for PARSEC 3.0 and SPLASH-2x
benchmarks. As expected, a reduction in miss penalty directly
translates into the improvement of overall system performance.
Our proposed ER-NoC architecture achieves a maximum and
an average system speedup of 15% and 9%, respectively.
Sensitivity: One of the key NoC parameters that can have a
significant impact on the proposed ER-NoC architecture is the
channel width (flit size). We perform a sensitivity analysis by
changing the channel width in ER-NoC from 128-bit (refer
Table 1) to 64-bit. The new architecture, ER-NoC-64 has 9-
flit data packets and hence should ideally take more time to
transfer a block from L2 cache bank to L1 cache. Surprisingly,
as shown in Figure 8, ER-NoC-64 is still able to beat the
performance of Baseline that has only 5-flit data packets.
Overhead: McPAT [15] is run at 22nm processor technology
to get the overheads due to the additional units. While the ER-
NoC architecture has a negligible area and static (leakage)
power overhead of 1.34% and 3.60%, respectively, dynamic
power reduces by 5.85% due to performance improvement.

V. RELATED WORKS

There are specific works on efficient cache [16] and
NoC [17] organisation to improve performance of many-core
systems. The existence of critical word and memory access
optimisations to prioritise critical words are available in the
classic textbook by Hennessy and Patterson [4]. One of the
first attempts to understand criticality for data requests from
L1 to L2 cache is by Gieske [12]. He reported that for multi-
programmed benchmark suites SPEC CPU 2000 and 2006,
sufficient regularity in critical word exists. Exploiting this
criticality information, quite a few optimisations are proposed
in the recent past [13][18][19][20]. However, none of them
explicitly studied the behaviour of critical words for multi-
threaded benchmark suites like PARSEC 3.0 and SPLASH-2x.

VI. CONCLUSION AND FUTURE WORK

In this brief, we shared two crucial insights about running
multi-threaded applications in NoC based many-core systems.

Taking an existing memory access optimisation as a case study,
we demonstrated that an NoC-aware implementation could
effectively utilise the two observed insights to significantly
improve the overall system performance. In future, we will
utilise the observed insights to design an optimal critical word
based memory access optimisation. We also plan to consider
recent AI and ML applications for analysis and comparison.

REFERENCES

[1] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua, “Automatic
program parallelization,” Proceedings of the IEEE, vol. 81, no. 2, pp.
211–243, 1993.

[2] B. K. Reddy, A. K. Singh, D. Biswas, G. V. Merrett, and B. M.
Al-Hashimi, “Inter-cluster thread-to-core mapping and dvfs on hetero-
geneous multi-cores,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 4, no. 3, pp. 369–382, 2017.

[3] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis, “An analysis of
on-chip interconnection networks for large-scale chip multiprocessors,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 7, no. 1, pp. 1–28, 2010.

[4] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in PACT, 2008,
pp. 72–81.

[6] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: Characterization and methodological considerations,” ACM
SIGARCH computer architecture news, vol. 23, no. 2, pp. 24–36, 1995.

[7] A. Sodani, et al., “Knights landing: Second-generation intel xeon phi
product,” IEEE MICRO, vol. 36, no. 2, pp. 34–46, 2016.

[8] J. Balkind et al., “Openpiton: An open source manycore research
framework,” in ASPLOS, 2016, pp. 217–232.

[9] B. Daya et al., “Scorpio: a 36-core research chip demonstrating snoopy
coherence on a scalable mesh noc with in-network ordering,” in Interna-
tional Symposium on Computer Architecture (ISCA), 2014, pp. 25–36.

[10] (2017) Intel Xeon Phi Processor 7235. [On-
line]. Available: https://ark.intel.com/content/www/us/en/ark/products/
128694/intel-xeon-phi-processor-7235-16gb-1-3-ghz-64-core.html

[11] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH computer
architecture news, vol. 39, no. 2, pp. 1–7, 2011.

[12] E. J. Gieske, “Critical words cache memory,” Ph.D. dissertation, Uni-
versity of Cincinnati, 2008.

[13] N. Chatterjee et al., “Leveraging heterogeneity in dram main memories
to accelerate critical word access,” in MICRO, 2012, pp. 13–24.

[14] A. Das et al., “Critical packet prioritisation by slack-aware re-routing
in on-chip networks,” in NOCS, 2018, pp. 1–8.

[15] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009,
pp. 469–480.

[16] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A
nuca substrate for flexible cmp cache sharing,” IEEE transactions on
parallel and distributed systems, vol. 18, no. 8, pp. 1028–1040, 2007.

[17] Y. Xue and P. Bogdan, “User cooperation network coding approach for
noc performance improvement,” in Proceedings of the 9th International
Symposium on Networks-on-Chip (NOCS), 2015, pp. 1–8.

[18] B. P. Lilly, J. M. Kassoff, and H. Chen, “Critical word forwarding with
adaptive prediction,” Apr. 29 2014, uS Patent 8,713,277.

[19] C.-C. Huang and V. Nagarajan, “Increasing cache capacity via critical-
words-only cache,” in ICCD. IEEE, 2014, pp. 125–132.

[20] Z. Li, J. San Miguel, and N. E. Jerger, “The runahead network-on-chip,”
in HPCA. IEEE, 2016, pp. 333–344.

https://ark.intel.com/content/www/us/en/ark/products/128694/intel-xeon-phi-processor-7235-16gb-1-3-ghz-64-core.html
https://ark.intel.com/content/www/us/en/ark/products/128694/intel-xeon-phi-processor-7235-16gb-1-3-ghz-64-core.html

	Introduction
	Data Criticality in Applications
	Criticality Aware Many-Core Systems
	NoC-Aware Early Restart Optimisation
	Critical Flit Identification
	Critical Flit Prioritisation
	Experimental Evaluation

	Related Works
	Conclusion and Future Work
	References

