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Opportunistic Caching in NoC:
Exploring Ways to Reduce Miss Penalty
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Abstract—Due to limited on-chip caching, data-driven applications with large memory footprint encounter frequent cache misses.
Such applications suffer from recurring miss penalty when they re-reference recently evicted cache blocks. To meet the worst-case
performance requirements, Network-on-Chip (NoC) routers are provisioned with input port buffers. However, recent studies reveal that
these buffers remain underutilised except during network congestion. Trace buffers are Design-for-Debug (DfD) hardware employed in
NoC routers for post-silicon debug and validation. Nevertheless, they become non-functional once a design goes into production and
remain in the routers left unused. In this work, we exploit the underutilised NoC router buffers and the unused trace buffers to store
recently evicted cache blocks. While these blocks are stored in the buffers, future re-reference to these blocks can be replied from
the NoC router. Such an opportunistic caching of evicted blocks in NoC routers significantly reduce the miss penalty. Experimental
analysis shows that the proposed architectures can achieve up to 21% (16% on average) reduction in miss penalty and 19% (14%
on average) improvement in overall system performance. While we have a negligible area and leakage power overhead of 2.58% and
3.94%, respectively, dynamic power reduces by 6.12% due to the improvement in performance.

Index Terms—Network-on-Chip (NoC), Miss Penalty, Cache Coherence, Virtual Channel (VC), Embedded Trace Buffer (ETB).
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1 INTRODUCTION

IN the era of data-driven applications, the demand for in-
formation processing is increasing exponentially. 2015 In-

ternational Technology Roadmap for Semiconductors (ITRS)
report predicts that the increasing demand for information
processing will drive a 30-fold increase in the number of
processing cores by 2030 [1]. It is indeed visible in the indus-
try, for example, with Intel Xeon Phi Processors featuring 64-
72 cores in their Tiled Chip Multi-Processors (TCMPs) [2].
With the increasing cores in TCMPs, scalable Network-on-
Chip (NoC) communication plays a very significant role in
data access latency. However, for standard applications, the
average packet injection rate is only around 5% in NoC
based TCMPs [3][4][5]. Low packet injection directly trans-
lates into poor utilisation of available NoC resources. While
TCMPs continue to scale, proposing policies to improve
NoC resource utilisation is a necessary step forward. Im-
proving NoC resource utilisation can reduce data access la-
tency and positively impact overall system performance [6].

Due to the increasing core counts, limited on-chip area
and associated cost, most of the modern TCMPs have only
two levels of on-chip caching [7][8][9]. They usually have
private, write-back L1 caches and a shared and distributed,
write-back L2 cache. When an L1 cache miss occurs, the
requested cache block is fetched from the corresponding L2
cache bank. A cache miss in L2 requires the block to be
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fetched from off-chip memory. The entire communication
is packet based and is done through the underlying NoC.
The time required to replace an existing block in L1 with an
incoming, requested cache block is called miss penalty. Since
L1 caches are small and frequently accessed, an L1 cache
miss almost always evicts a valid cache block. Based on
whether an evicted, valid block is clean or dirty (modified),
it is either discarded or sent to the L2 cache bank for write-
back. However, due to temporal and/or spatial locality,
if a recently evicted block from L1 cache is re-referenced,
it needs to be fetched again. The re-referenced block is
fetched from the corresponding L2 cache bank. Since L2 is
distributed, the corresponding L2 cache bank can be located
anywhere, in the nearest, to the farthest core. In the worst
case, when the re-referenced block is not present in the L2
cache bank (L2 miss), it is fetched from off-chip memory.
Increasing the L1 cache size may delay the block eviction
and avoid cache miss penalty up to an extent. However, it is
not feasible, as increasing the cache size may impact its hit
time and affect instruction pipeline. Increasing the cache size
is also not feasible due to the on-chip area and associated
cost constraints. In any way, experiencing cache miss penal-
ties on re-reference of recently evicted blocks is inevitable.
Frequent cache miss penalties severely hamper application
execution time and degrade overall system performance.

Packet based NoC use routers to establish on-chip com-
munication between the available cores in a TCMP. Modern
NoC based TCMPs employ input buffered routers for scal-
able on-chip bandwidth [10][11]. Packets on their way from
source to destination are temporarily stored in the input port
buffers of NoC routers. Stored packets take part in routing
and arbitration and get forwarded towards destination as
soon as they get the desired output port. However, due
to the low packet injection rate, input port buffers in NoC
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Figure 1: Conceptual view of an NoC based TCMP

routers are underutilised. Experimental analysis with stan-
dard applications shows that buffer utilisation of routers is
very low, except during peak NoC congestion (Section 2.2).

Due to the design complexity of NoC based TCMPs,
post-silicon debug is usually practised to validate a pro-
posed design before going into the production. To aid
post-silicon debug and validation, Design-for-Debug (DfD)
hardware are embedded across various modules and cores
of a TCMP [12]. An important phase of the debug involves
validating the on-chip interaction between different cores.
Trace buffers are DfD hardware embedded in NoC routers
to record their state for post-silicon debug and validation.
However, when a TCMP design goes into production, most
of the DfD hardware become non-functional. Since the us-
age of DfD hardware, including trace buffers, is sporadic
and rare after the production, most of them are left unused.

In this work, we exploit the underutilised storage space
available in NoC routers to store evicted L1 cache blocks. If
an evicted L1 cache block is dirty, it is sent to the correspond-
ing L2 cache bank for write-back. Such blocks enter the local
router 1 as packets, gets stored in local input port buffers,
and take part in routing and arbitration to reach their desti-
nation for write-back. We propose to disable the arbitration
of such blocks and keep them stored in the local router
buffers for as long as possible. Since buffer utilisation is low,
evicted, dirty L1 cache blocks can be kept stored in the local
routers without inducing any NoC congestion. If an evicted
L1 cache block is clean, it is discarded and not sent for
write-back as the corresponding L2 cache bank has the same
copy of the block. We propose to send such blocks to the
local router and keep them stored in the unused embedded
trace buffer. Now, when a recently evicted L1 cache block
is re-referenced, we propose to arrange a quick reply with
the stored block from the local router. It is possible as the
recently evicted cache block might be present (stored) either
in the local input port buffer or the embedded trace buffer.
These optimisations can significantly reduce the L1 cache
miss penalty and improve overall system performance. In
this work, we make the following major contributions:

• Reply with Stored Dirty Blocks: We identify evicted,
dirty L1 cache blocks when they enter the local
routers to travel for write-back towards their destina-
tion L2 cache bank. We propose to disable arbitration
of such blocks to keep them stored in local input port
buffers. Future re-reference to the stored blocks are
replied by the local router to reduce miss penalty.

1. Local router connects a tile (core) to the underlying NoC.

• Reply with Stored Clean Blocks: To increase the
chances of local reply, we propose to keep the
evicted, clean L1 cache blocks in the unused, embed-
ded trace buffer. Local router can reply to the future
re-references from local input port buffers as well as
trace buffer, which reduces miss penalty even further.

• Forward/Drop of Stored Blocks: We propose two
techniques to forward dirty L1 cache blocks stored
in the local input port buffers. A time-triggered
technique based on a certain time threshold, and a
message-triggered technique based on a request from
L2. We also propose a technique to drop clean L1
cache blocks stored in trace buffer and inform L2.

• Maintain Cache Coherence: To preserve the states of
evicted L1 cache blocks, we propose a new coherence
message. Since the L2 cache is shared, we make sure
that the proposed optimisations of the local store and
reply do not violate the cache coherence.

2 BACKGROUND

Conceptual view of an NoC based TCMP is shown in Fig-
ure 1 for reference as we explain the necessary background.

2.1 L1 Cache Miss Penalty
Since L1 caches are small, a cache miss is likely to occur
against a requested block. On an L1 cache miss, the re-
quested block is fetched from the next level of memory
(L2 cache). In NoC based TCMPs, the L2 cache is usually
divided into multiple banks and distributed across all the
cores, as shown in Figure 1. Hence, the requested block
needs to be fetched from the corresponding L2 cache bank,
which can be anywhere, in the nearest, to the farthest core.
If the requested block is not present in the L2 cache bank
(L2 miss), it is fetched from the next level of memory. Latest
NoC based TCMPs like Intel Xeon Phi Processor (2016) [7],
Princeton Piton Processor (2015) [8], MIT Scorpio Processor
(2014) [9] and others, use only two levels of on-chip caching.
In these systems, L2 serves as the last level cache (LLC), and
a cache miss in L2 requires the block to be fetched from off-
chip memory. Hence, in the worst case, L1 cache miss on
a requested block requires the block to be fetched from the
off-chip memory, which is very time expensive. The time
required to replace an existing block in L1 with an incoming
cache block is called L1 cache miss penalty. In NoC based
TCMPs, L1 cache miss penalty (MPL1) can be given as:

MPL1 = tRequest
L1−LLC + TAccess

LLC + tReply
LLC−L1 (1)
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where

TAccess
LLC =

 THit
LLC if LLC Hit

TMiss
LLC + MPLLC if LLC Miss

(2)

here, T j
i is the time taken by module i to complete a task

j whereas, tki−j is the time taken by message k to travel
from module i to module j through the underlying NoC.
For example, TAccess

LLC is the time taken by an LLC bank to
access a cache block whereas, tRequest

L1−LLC is the time taken by a
cache miss request to travel from L1 cache to the LLC bank.

As given in equation (1), L1 cache miss penalty is domi-
nated by on-chip transfer time (tki−j). In the worst case of an
LLC miss, the dominance of transfer time is even more since
the miss request and reply travels to and from the memory
controller (MC). The corresponding MC can be located in
any of the corner routers (refer Figure 1). During on-chip
congestion, the transfer time can get longer due to unknown
router delay along the way. Hence, the underlying NoC
plays an important role in L1 cache miss penalty.

2.2 VC Availability

NoC based systems employ routers, which have three de-
sign alternatives: input buffered, minimally buffered and
bufferless; each with different pros and cons. To meet the
worst case performance bandwidth, modern TCMPs prefer
input buffered NoC routers [10][11]. Input buffers are fur-
ther divided into virtual channels (VCs) for deadlock-free
routing and better utilisation [13]. As shown in Figure 1,
packets entering through different input ports (east, south,
west, north and local) get temporarily stored in the available
VCs and take part in routing and arbitration decisions. VC
availability in NoC based TCMPs can be given as:

V C Availabilityn =
Cycles when n V Cs are Free

Total Execution Cycles
(3)

Figure 2 shows the VC availability in local input port
of NoC routers for a set of standard multi-programmed
benchmarks (SPEC CPU2006 [14]). As the average injection
rate of these benchmarks is only around 5%, except during
peak NoC congestion, at least one VC is always free (≈
95%). A similar observation is expected for standard multi-
threaded benchmarks (PARSEC 3.0 [15]) where the average
injection rate is even lower. The observation in Figure 2 is in
sync with the conclusions in the available literature [3][4][5].

NoC based TCMPs use input buffered routers for worst
case bandwidth, but buffers (VCs) remain underutilised.

2.3 Embedded Trace Buffer

Pre-silicon validation is a standard practice in the process
of any hardware system design. It involves theory-based
formal verification of the design for functional correct-
ness and simulation-based verification of the RTL descrip-
tion [16]. However, increasing core counts and the need for
an efficient and scalable communication increase the design
complexity of NoC based TCMPs. For such systems, theory-
based formal verification suffers from state space explosion
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Figure 2: VC availability in local input port

problem. Furthermore, simulation-based verification is very
slow. Hence, exhaustively exploring the entire design space
of a TCMP is not feasible in a time-bound pre-silicon valida-
tion. Thus, post-silicon debug and validation is necessary.

Post-silicon debug and validation begins when the first
few silicon prototypes of the proposed design are available.
Longer tests are run on actual hardware (prototype) in
native speed for thorough validation. Hence, post-silicon
validation can expose functional bugs that might have been
missed during pre-silicon validation. Key to an effective
post-silicon debug and validation lies in the observability
and controllability of internal signals when the tests are run.
To facilitate debug and validation, Design-for-Debug (DfD)
hardware are embedded across various modules and cores
of a TCMP [12]. DfD hardware can trace internal signals,
dump contents of registers and memory, patch microcode
and firmware, create user-defined triggers and interrupts,
etc. An important phase of debugging NoC based TCMPs is
to validate the on-chip interaction between different cores.
Trace buffers are DfD hardware embedded in NoC routers
to record their state for post-silicon debug and validation.
Trace buffer and embedded trace buffer (ETB) are used
interchangeably throughout the text, thus should not be
confused with. Trace buffers periodically take snapshot of
the NoC router and stores it as a compressed trace in a
circular memory storage, as shown in Figure 1. Size of
trace buffers typically varies between 2KB-8KB in different
modules and can roughly store 10K-30K lines of compressed
trace. After successful debug and validation, the silicon
prototype goes for mass production. Thereafter, most of
the DfD hardware including trace buffers become non-
functional. Since the usage of DfD hardware is sporadic
and rare after the production, most of them are left unused.
Even though the DfD hardware are power-gated, their area
footprint remains in the routers (chip) without any benefit.

Trace buffers facilitate post-silicon debug and validation
of NoC routers, but they are left unused after production.

3 MOTIVATION

Since L1 caches are small and frequently accessed, an L1
cache miss almost always evicts a valid block. However,
due to temporal locality, a recently evicted L1 cache block
may be re-referenced. Since a cache block contains multiple
words, even for spatial locality, a recently evicted L1 cache
block may be re-referenced. The duration from the eviction
of an L1 cache block to the request of the same block in
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future, by the same core is called re-reference time. Re-
reference time (RT) in NoC based TCMPs can be given as:

RT j
i = |Request(Bj

i )|Ty
− |Eviction(Bj

i )|Tx
(4)

where at time Tx, cache block i was evicted from core j
and in the future at time Ty , block i is requested again by
the same core j. Figure 3 shows the average re-reference
time for different SPEC CPU2006 [14] and PARSEC 3.0 [15]
benchmarks. For example, in a 64-core NoC based TCMP
running a multi-programmed benchmark astar, an evicted
L1 cache block is re-referenced within an average time of
6532 cycles. Across all benchmarks, on average, within a
small interval of around 12000 cycles, an evicted L1 cache
block is re-referenced. This interval indirectly indicates how
frequently an NoC based TCMP suffers from L1 cache miss
penalty due to unfortunate block evictions.

In this work, we explore ways to reduce L1 cache miss
penalty in NoC based TCMPs. Evicted, clean L1 cache
blocks are discarded, whereas dirty L1 cache blocks are sent
over the NoC to the corresponding L2 cache bank for write-
back. To reach their destination for write-back, evicted, dirty
L1 cache blocks enter the local router through the local input
port as packets. They temporarily get stored in the available
VCs and take part in routing and arbitration decisions to
get the desired output port. In this work, we propose to
disable the arbitration of such evicted, dirty L1 cache blocks
while they are stored in the local VCs. Without taking part
in the arbitration, these evicted, dirty blocks can not get
the desired output port and leave the local router. From
the observation in Figure 2, we know that local input port
VCs remain underutilised (free) most of the time. Hence,
we can keep the evicted, dirty L1 cache blocks stored in
the local router for as long as possible without creating
injection suppression for other packets. During the time an
evicted, dirty L1 cache block is locally stored, a re-reference
request for the same block by the same core can be locally
replied. We propose to generate direct reply from the local
router if a requested block is present in the local VCs. From
equation (1) and Section 2.1, we know that L1 cache miss
penalty involves on-chip travel and may also suffer from
NoC communication delay. Local reply to L1 cache miss
requests from the NoC routers can avoid the on-chip travel
altogether and get significant reduction in miss penalty.

Unlike dirty blocks, clean blocks are discarded after
eviction from L1 cache since a write-back is not necessary.
However, the number of clean blocks evicted from L1 cache
is much more than the number of dirty blocks. From the
observation in Figure 3, we are aware that an evicted L1
cache block (clean or dirty) is re-referenced within a small
interval of around 12000 cycles. Hence, to improve the
chances of local reply, we propose to bring evicted, clean
L1 cache blocks to the local routers and keep them stored
in local VCs. But, the underutilised local VCs are already
employed to store evicted, dirty L1 cache blocks. Making
the evicted, clean and dirty blocks compete against each
other for a place in the local VCs kill the purpose of local
store. From the conclusion in Section 2.3, we know that a
DfD storage infrastructure called trace buffer, embedded in
NoC routers is left unused. In this work, we re-purpose
the unused trace buffer in NoC routers to store evicted,
clean L1 cache blocks; which are normally discarded. Until
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Figure 3: Re-reference time of evicted L1 cache blocks

a block is stored in the trace buffer, a re-reference to the
same block by the same core can be serviced from the
local router. With the evicted, dirty blocks stored in local
VCs and the evicted, clean blocks now stored in the trace
buffer, our chances of local reply increase many-fold. Our
proposed optimisations to generate immediate local reply
from NoC routers can significantly reduce L1 cache miss
penalty, thereby improving overall system performance.

Proposed Solution:

Store evicted L1 cache blocks in underutilised NoC router
buffers (VCs) and unused trace buffers (ETBs). Upon re-
reference, generate direct reply from the local routers.

4 OPPORTUNISTIC CACHING IN NOC
A conceptual view of the router microarchitecture that im-
plements our proposed optimisations is given in Figure 4.
We consider two-level on-chip caching with MOESI dis-
tributed directory coherence protocol. Keeping Figure 4 and
MOESI protocol as reference, we explain the working of our
proposed architecture in the following sub-sections.

In MOESI distributed directory coherence based cache
organisation, a cache block can be in Modified (M):
Possibly different from memory and only copy, Owned
(O): Possibly different from memory and possibly
shared, Exclusive (E): Same as memory and only
copy, Shared (S): Same as memory/owner and pos-
sibly shared, or Invalid (I): Invalid copy state. Ex-
clusive (E) state can be considered as a subset of
Owned (O) state. Our discussion includes the fol-
lowing coherence messages from the protocol. GETS/
GETX: Read/Write request, DATA-GETS/DATA-GETX:
Shared/Exclusive data, PUTS/PUTO/PUTM: Write-
back request for Shared/Owned/Modified data, ACK-
PUTS/ACK-PUTO/ACK-PUTM: Acknowledgement for
PUTS/PUTO/PUTM write-back, DATA-PUTS/DATA-
PUTO/DATA-PUTM: Shared/Owned/Modified data for
write-back, UNBLOCK: Intimation for DATA-PUTS drop.

4.1 Block Store in Router Buffers
A valid block evicted from L1 cache can be either clean
(shared) or dirty (owned/modified). Clean blocks are dis-
carded and dirty blocks are sent for write-back. For evicted,
dirty blocks, a PUTO/PUTM write-back request is initiated
from L1 cache controller (L1 CTLR) to the corresponding L2
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Figure 4: Conceptual view of the proposed router microarchitecture. All the additional units and links are shown in red.
Evicted L1 cache blocks enter the NoC as packets and get divided into multiple smaller units called flits (H, B0, B1, T).
Based on whether a block is clean or dirty, the corresponding flits get stored in either the trace buffer or the local VCs.

DestSrc EvictedAddr .   .   .   .   . Clean Miss Forward

Figure 5: Modified message/packet header

cache bank. As shown in Figure 6a, such requests travel
through the underlying NoC and reach their destination
( A ). After receiving a request, the corresponding L2 cache
bank controller (L2 CTLR) replies with an acknowledgement
(ACK-PUTO/ACK-PUTM) to receive the evicted, dirty
block for write-back ( B ). As soon as L1 CTLR receives an
acknowledgement, the evicted block is sent towards the L2
cache bank as a DATA-PUTO/DATA-PUTM message( C ).
All the data and control messages enter the local NoC router
as packets, gets stored in the available VCs and take part in
routing and arbitration decisions to reach their destination.
For our optimisations, all the evicted L1 cache blocks (both
clean and dirty) are marked with a 1-bit flag (Evicted) in their
packet header for identification, as shown in Figure 5.
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C
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DATA-PUTM  /  DATA-PUTO
C
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Figure 6: Eviction of a dirty L1 cache block

Our first optimisation targets DATA-PUTO/DATA-
PUTM write-back data messages on their way to the des-
tination. When any new packet enters the local router and
gets buffered in the VC for routing and arbitration, Evicted
flag is checked by the additional Local Store/Reply, For-
ward & Drop (LSR-FD) unit as shown in Figure 4. If the
Evicted flag is SET, we know that the corresponding packet is
actually an evicted, dirty cache block (DATA-PUTO/DATA-
PUTM), which is on its way to the L2 cache bank for write-
back. Even though the Evicted flag is set for both clean and
dirty blocks, the identified block in the router can not be

clean as they are dropped after eviction. We consider two-
stage NoC routers (stage-1: RC, stage-2: VA and SA) where
LSR-FD unit works in stage-1 in parallel with the Route
Compute (RC) unit. While a check is performed by the LSR-
FD unit to identify an evicted block (packet), route for the
packet is also computed in parallel by the RC unit. If the
Evicted flag is found SET for a packet (DATA-PUTO/DATA-
PUTM) in stage-1, LSR-FD unit disables stage-2, i.e. VC and
switch arbitration for the packet. Without arbitration, such
packets can not leave the local router, as shown in Figure 6b.
This way, we keep all the evicted, dirty L1 cache blocks
stored in the input port VCs of local router for as long as
possible (explained in Section 4.4). Since VCs are under-
utilised due to low packet injection rate, keeping the evicted,
dirty L1 cache blocks stored in local routers do not usually
create any injection suppression. Both L1 and L2 caches are
unaware of the proposed optimisation. For L1 CTLR, the
evicted, dirty block is on its way or already reached the
corresponding L2 cache bank for write-back. On the other
side, since L2 CTLR already sent an acknowledgement to
receive the block, it believes that the block is on its way.

4.2 Block Store in Trace Buffers

If an evicted L1 cache block is clean (shared), it is simply
discarded since a write-back is not necessary. As shown
in Figure 7a, L1 CTLR initiates a PUTS write-back request
towards the corresponding L2 cache bank ( D ). Upon receiv-
ing the request, L2 CTLR sends an acknowledgement (ACK-
PUTS) to the L1 cache ( E ). The acknowledgement from
L2 CTLR serves as the permission to discard the evicted,
clean block (DATA-PUTS) in the L1 cache. Accordingly, L1
CTLR drops the evicted block ( F ) and intimate the L2 cache
bank with an UNBLOCK message ( G ). After receiving the
UNBLOCK message, L2 CTLR removes the L1 cache entry
from the corresponding sharer list of that block.

Our second optimisation targets clean L1 cache blocks
that are discarded after eviction (DATA-PUTS). Since clean
blocks are more frequently evicted, we propose to keep them
stored to increase our chances of local reply (explained in
Section 4.3). As shown in Figure 7b, instead of dropping
DATA-PUTS, we redirect the message towards NoC ( F ). We
also prohibit the transfer of UNBLOCK message towards the
L2 cache bank. Since an acknowledgement is already sent,
L2 CTLR believes that the corresponding block is discarded,
and the UNBLOCK message is on the way. Now, the chal-
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Figure 7: Eviction of a clean L1 cache block

lenge is to accommodate the evicted, clean L1 cache blocks
in local routers, which are normally discarded. Though
we advocate that modern NoC based TCMPs use input
buffered routers and buffers (VCs) are underutilised, but
VCs are limited. With the first optimisation in Section 4.1,
underutilised VCs are already employed to store evicted,
dirty L1 cache blocks when they enter the local router to
travel for write-back. Making the clean blocks compete with
dirty blocks for the limited VCs available in local input port
defeats the purpose of accommodating more blocks. Thus,
we consider storing the evicted, clean L1 cache blocks in
the unused embedded trace buffer (ETB) of local routers.
To facilitate the optimisation, all the evicted, clean L1 cache
blocks are marked with a 1-bit flag (Clean) in their packet
header as shown in Figure 5. When a new packet enters
the local router, a 1:2 DEMUX (D) checks the Clean flag
and if found SET, routes the packet towards the ETB (refer
Figure 4). These packets are actually evicted, clean L1 cache
blocks sent to NoC by our optimisation to be locally stored.
We have re-purposed the ETB with the help of LSR-FD
unit to accommodate such incoming packets. The detailed
working of LSR-FD unit is presented in Algorithm 1. All the
evicted, clean L1 cache blocks are now stored in the local
routers to facilitate local reply when a possibility appears.
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Figure 8: L1 cache miss on a requested block

4.3 Block Reply from Routers

On a cache miss, the L1 CTLR issues a GETS/GETX request
to the corresponding L2 cache bank ( H ), as shown in
Figure 8a. Based on the received request, L2 CTLR replies
with the block either in shared (DATA-GETS) or exclusive
(DATA-GETX) state ( I ). Since the L2 cache is distributed,
based on the location of the corresponding L2 cache bank

Algorithm 1: Working of LSR-FD Unit
Input: Status of embedded trace buffer (ETB) and local virtual

channels (VCs), modified message/packet header
Output: Local store or reply, block forward and drop
Notations:

1 m: Number of trace buffer entries (ETB)
2 n: Number of virtual channels (V C)
3 τi: Time threshold of V Ci | 0 ≤ i < n
4 Pnew

local: Packet entered through local input port
5 P stored

ETBi
: Packet stored in ETBi | 0 ≤ i < m

6 P j
V Ci

: Packet in V Ci | 0 ≤ i < n, j ∈ {new, stored}

7 if Pnew
local[Clean] == SET then

8 /* Local store of DATA-PUTS [4.2] */
9 Enqueue ETBi to store Pnew

local
10 Increment i for next store
11 else
12 if Pnew

V Ci
[Evicted] == SET then

13 /* Local store of DATA-PUT(O/M) [4.1] */
14 τi = 64 ∨ 128 ∨ . . . ∨ 1024
15 Disable VA and SA for Pnew

V Ci

16 else if Pnew
V Ci

[Miss] == SET then
17 /* Local reply of GET(S/X) [4.3] */
18 for ∀ETBj | ETBj 6= NULL do
19 if P stored

ETBj
[Addr] == Pnew

V Ci
[Addr] then

20 Dequeue ETBj to send P stored
ETBj

21 Deallocate V Ci to drop Pnew
V Ci

22 for ∀VCk | τk > 0 do
23 if P stored

V Ck
[Addr] == Pnew

V Ci
[Addr] then

24 τk = 0
25 P stored

V Ck
[Src] = Pnew

V Ci
[Dest]

26 P stored
V Ck

[Dest] = Pnew
V Ci

[Src]

27 Enable VA and SA for P stored
V Ck

28 Deallocate V Ci to drop Pnew
V Ci

29 /* Defensive Vacate of DATA-PUT(O/M) [4.4] */
30 for ∀VCi | VCi 6= NULL do
31 if ∃VCi | Pstored

V Ci
[Evicted] == SET then

32 τi = 0
33 P stored

V Ci
[Evicted] = RESET

34 Enable VA and SA for P stored
V Ci

35 /* TT-BF of DATA-PUT(O/M) [4.4.1] */
36 for ∀VCi | τi > 0 do
37 τi = τi − 1
38 if τi == 0 then
39 P stored

V Ci
[Evicted] = RESET

40 Enable VA and SA for P stored
V Ci

41 /* MT-BF of DATA-PUT(O/M) [4.4.2] */
42 if Pnew

V Ci
[Forward] == SET then

43 for ∀VCj | τj > 0 do
44 if P stored

V Cj
[Addr] == Pnew

V Ci
[Addr] then

45 τj = 0
46 P stored

V Cj
[Evicted] = RESET

47 Enable VA and SA for P stored
V Cj

48 Deallocate V Ci to drop Pnew
V Ci

and the underlying NoC congestion, reply takes an indefi-
nite time to reach L1 cache. In the worst case of an L2 cache
miss, the reply message can take even longer time.

Our next optimisation identifies GETS/GETX mes-
sages and attempts local reply with the stored DATA-
PUTS/DATA-PUTO/DATA-PUTM messages from NoC
routers ( I ), as shown in Figure 8b. All the data request
messages (GETS and GETX) are marked with a 1-bit flag
(Miss) in their packet header, as shown in Figure 5. When
a new packet enters the local router with its Miss flag SET,



IEEE TRANSACTIONS ON COMPUTERS, VOL. 00, NO. 00, MONTH 0000 7

LSR-FD unit attempts to generate a local reply if possible.
These packets are actually GETS/GETX request messages
carrying the address of a requested cache block. LSR-FD
unit compares the requested address with the addresses of
the stored cache blocks in trace buffer. One of the entries
may have the requested block since the stored blocks are
evicted from the same L1 cache in the recent past. If a match
is found, we can generate a local reply to the cache miss
request with a stored DATA-PUTS message ( I ), as shown
in Figure 8b. The matched block (packet) is forwarded from
the trace buffer to the local output port (refer Figure 4). A 2:1
MUX (M) checks the Clean flag and if found SET, knows that
the packet has come from the trace buffer. Such packets are
given priority to take the local output port for destination.

If the requested address is not found in the trace buffer,
LSR-FD unit compares it with the addresses of all the
stored blocks in the non-empty VCs. A match is possible
since the stored blocks in local input port VCs are recently
evicted, dirty L1 cache blocks. If a match is found, we can
generate a local reply to the cache miss request with a
stored DATA-PUTO/DATA-PUTM message ( I ), as shown
in Figure 8b. LSR-FD unit swaps the source and destina-
tion of the matched block (packet) with the request packet
(GETS/GETX) and drop the GETS/GETX packet as given
in Algorithm 1. The new destination of the matched block
(packet) is the same L1 cache from where it was evicted. The
stored packet is now enabled for VC and switch arbitration,
which were disabled earlier to keep it stored in the local
router. Since the destination (L1 cache) is connected to the
very same local router, such packets get ejected through
the local output port. Avoiding on-chip travel (also off-chip
travel in case of an L2 cache miss) to fetch a requested
block (DATA-GETS/DATA-GETX) significantly reduces L1
cache miss penalty. In realisation, the proposed optimisa-
tions satisfy a GETS/GETX request with a matching DATA-
PUTS/DATA-PUTO/DATA-PUTM message stored in the
local router (in VCs or in embedded trace buffer (ETB)).

4.4 Block Forward and Drop from Routers

As we store evicted L1 cache blocks in the underutilised
VCs and unused ETB of the local NoC routers, we face
two key challenges. First, at a time during NoC congestion
(when the packet injection rate is high), keeping the VCs
occupied with stored blocks may create VC unavailability
for incoming packets. Second, an evicted block that is now
stored in the local router may be requested by others in the
L2 cache bank resulting in the delay of their execution. Since
our work is all about opportunistic caching, we take all the
necessary steps to make sure that the proposed local store
and reply does not hamper the usual NoC communication.

If a new packet can not be injected into the local router
due to VC unavailability, we employ a Defensive Vacate
approach to identify one of the VCs to be vacated where an
evicted L1 cache block is stored. When all the VCs are full,
Defensive Vacate dictates that if any one of the VCs contains
a stored block, that VC needs to be vacated. When multiple
VCs have stored blocks, the oldest of them is vacated.
Defensive Vacate is given in lines 29-34 of Algorithm 1. The
identified VC contains an evicted, dirty L1 cache block since
clean blocks are stored in the ETB. To vacate the identified

VC, we must forward the stored, dirty block towards its
destination for write-back. LSR-FD unit simply enables the
VC and switch arbitration for the stored block, which were
disabled when we kept it stored in the VC. This action
ensures that the corresponding VC will be free in subse-
quent cycles and hence make room for new injection. NoC
congestion can create scenarios like hotspots and Head-of-
Line (HoL) blocking. In such cases, vacating all the VCs
instead of just one, having stored blocks may revive the
network. However, run-time detection of scenarios like HoL
blocking is difficult [17]. Nevertheless, Defensive Vacate can
be modified accordingly when such a direction is explored.

Even in the absence of injection pressure, the status
of a stored block (both clean and dirty) may be ex-
pected in the L2 cache bank by other requesters to con-
tinue their execution. Since L2 CTLR is expecting a reply
(UNBLOCK/DATA-PUTO/DATA-PUTM), it makes all the
requester wait for the status. Trace buffer accommodates
evicted, clean L1 blocks in a small circular queue (refer
Figure 4) and hence such blocks do not stay stored for very
long. When the trace buffer is full, the oldest clean block
is replaced by an incoming block. When the oldest clean
block is replaced (dropped), an UNBLOCK message is sent
to the corresponding L2 cache bank for necessary action
(explained in Section 4.5). To make sure that the wait for
evicted, dirty blocks in the corresponding L2 cache bank is
not too long, we propose the following two techniques.

4.4.1 Time-Triggered Block Forward (TT-BF)

An evicted, dirty L1 cache block is stored in the local router
until a certain time threshold which is decided based on the
re-reference time of evicted blocks (refer Figure 3). We add
a threshold counter (τi) correspond to each VC of the local
input port, as shown in Figure 4. When a counter reaches the
threshold, the stored block (packet) in the corresponding VC
is enabled for VC and switch arbitration. This action triggers
forwarding of the stored, dirty block towards its destination
for write-back. Till the time a block is locally stored, access
requests for the block by others is delayed by a time equal
to the threshold in the corresponding L2 cache bank.

4.4.2 Message-Triggered Block Forward (MT-BF)

An evicted, dirty L1 cache block is stored in the local router
until it is requested by someone in the corresponding L2
cache bank. In such a case, we make L2 CTLR resend
an acknowledgement (ACK-PUTO/ACK-PUTM) for the re-
quested block. Such acknowledgements are marked with
a 1-bit flag (Forward) in their packet header, as shown in
Figure 5. An acknowledgement was already sent, and the L2
CTLR is now waiting for the block for write-back. We send
the second acknowledgement to inform that the block is
requested by someone. When the second acknowledgement
arrives at the destination router (local router of the stored
block), the corresponding stored block is enabled for VC and
switch arbitration. LSR-FD unit takes the decision when it
finds the Forward flag SET for an incoming packet, as given
in lines 41-48 of Algorithm 1. Then, the second acknowl-
edgement reaches L1 CTLR, where it is simply ignored.
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4.5 Cache Coherence

As the shared L2 cache is involved in the proposed op-
timisations, we have to make sure that cache coherency
is maintained throughout. After sending an acknowledge-
ment (ACK-PUTO/ACK-PUTM), the L2 CTLR waits for
the corresponding DATA-PUTO/DATA-PUTM message to
initiate write-back. Since the evicted, dirty L1 cache block
is coming for write-back, it must be the only copy in the
entire system. Therefore, as long as evicted, dirty L1 cache
blocks are stored in local routers, no special action is needed
to maintain coherence in the system. A write-back is not
necessary for evicted, clean L1 cache blocks. Hence, after
sending an acknowledgement (ACK-PUTS), the L2 CTLR
waits for an UNBLOCK message to remove the correspond-
ing entry from the sharer list. While the L2 CTLR waits
for the incoming UNBLOCK message, new requests for the
corresponding clean block may be serviced. A new request
for shared access (GETS) to the block is granted, while a
request for exclusive access (GETX) is put on wait. Though
multiple copies of the block may exist in the system, all of
them are clean, and hence the cache block is coherent. Thus,
no special action is needed for coherence when an evicted,
clean L1 cache block is kept stored in the local router.

NoC L2L1

L

J

KDATA-PUTS/PUTO/PUTM

CANCEL-PUT

GETX  /  GETS

L

CANCEL-PUT

(a) During a local reply

NoC L2L1

O

M
DATA-PUTS

UNBLOCK

DATA-PUTS

N
O

UNBLOCK

(b) During a block drop

Figure 9: Messages to maintain cache coherence

When we attempt a local reply of GETS/GETX message
with the stored DATA-PUTS/DATA-PUTO/DATA-PUTM
message, we need to maintain coherence. As shown in
Figure 9a, when a local reply reaches L1 CTLR ( K ), a special
coherence message CANCEL-PUT is initiated towards the
L2 cache bank ( L ). With that CANCEL-PUT message, L2
CTLR learns that the corresponding UNBLOCK/DATA-
PUTO/DATA-PUTM message will not come. Hence, L2
CTLR rolls back the state of the corresponding block as if the
eviction never happened. This way, we preserve the state of
an evicted L1 cache block to maintain coherence. However,
there can be a scenario where a write request (GETX) that
requires a block with exclusive access is locally replied by a
stored block that has shared access (DATA-PUTS). In such
a scenario, we make sure that the L1 CTLR take permission
from the L2 CTLR before granting the write request.

When a VC is to be vacated, the corresponding dirty
block stored in that VC is forwarded for write-back, hence
no coherence violation. When an entry in the trace buffer
needs to be deleted, the stored clean block is dropped; but
the corresponding L2 cache bank needs to be intimated to
maintain coherence. Hence, to drop a clean block stored in

Table 1: Simulation configuration

Processor 64 OoO x86 cores
L1 Cache 16KB, 4-way, 64B blocks, private, split

L2 Cache (LLC) 128KB×64 cores, 8-way, 64B blocks, shared
Memory Bank 4; one located at each corner

Cache Coherence MOESI distributed directory

NoC

8×8 2D mesh, 128-bit flit channel
3 Virtual Networks (VNs), VN0, VN1, VN2
2/4/6 Virtual Channels (VCs) per VN
1-flit depth control VC, 5-flit depth data VC

Routing 2-stage routers, X-Y dimension-order routing
Packets 1-flit for control packet, 5-flit for data packet

Trace Buffer (ETB) 2KB/4KB/8KB per router

Benchmarks SPEC CPU2006 (multi-programmed)
PARSEC 3.0 (multi-threaded)

the trace buffer, we send the block (DATA-PUTS) back to
the same L1 cache from where it was evicted ( M ), as shown
in Figure 9b. After receiving the DATA-PUTS message, L1
CTLR drops the block ( N ) and generates an UNBLOCK
message for the L2 cache bank ( O ). With the arrival of
the UNBLOCK message, L2 CTLR removes the sharer and
completes the process of clean (shared) block eviction.

5 PERFORMANCE ANALYSIS

We consider the following architectures for evaluation:

• Baseline: Without any optimisation.
• DB-TTBF: Store evicted, dirty L1 cache blocks in

local router VCs and use TTBF.
• DB-MTBF: Store evicted, dirty L1 cache blocks in

local router VCs and use MTBF.
• CDB-TTBF: Store evicted, clean as well as dirty L1

cache blocks in local router VCs. Use TTBF for dirty
blocks and drop clean blocks.

• CDB-MTBF: Store evicted, clean as well as dirty L1
cache blocks in local router VCs. Use MTBF for dirty
blocks and drop clean blocks.

• CDB-ETB-TTBF: Store evicted, clean L1 cache blocks
in ETB and dirty blocks in local router VCs. Use TTBF
for dirty blocks and drop clean blocks.

• CDB-ETB-MTBF: Store evicted, clean L1 cache
blocks in ETB and dirty blocks in local router VCs.
Use MTBF for dirty blocks and drop clean blocks.

5.1 Simulation Framework and Workloads
The baseline and proposed architectures are modelled on
event-driven gem5 simulator [18]. Our system configuration
is similar to Intel Xeon Phi Processor 7235 [19] with shared
and distributed L2 cache (LLC). Due to certain limitations
in gem5, we could not model the exact cache configuration
of Intel Xeon Phi Processor 7235. However, our cache con-
figuration is not chosen to give undue advantage to the pro-
posed optimisations. Rather, it challenges the optimisations
with an L1 cache hit rate of around 90-95% for all the bench-
marks we evaluate. Our system configuration is presented
in Table 1 for reference. We modify GARNET [20] module in
gem5 to implement the proposed router microarchitecture.
We modify MOESI CMP directory protocol in Ruby inside
gem5 to implement and maintain cache coherence.
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Figure 10: L1 cache miss penalty
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Figure 11: Network stall time

Table 2: Workload mixes

Mix Benchmarks Copies

same
astar, cactusADM, GemsFDTD, gromacs, h264ref,

1×64: 64hmmer, lbm, leslie3d, namd, omnetpp,
perlbench, sjeng, soplex, sphinx, xalancbmk

low gromacs, GemsFDTD, hmmer, astar, h264ref
4×16: 64med sphinx, perlbench, cactusADM, omnetpp, soplex

high xalancbmk, namd, sjeng, leslie3d, lbm

bla blackscholes; runs with 64 threads

1×64: 64

can canneal; runs with 64 threads
ded dedup; runs with 64 threads
fer ferret; runs with 64 threads
str streamcluster; runs with 64 threads

swa swaptions; runs with 64 threads

To evaluate and analyse the performance, we con-
sider multi-programmed as well as multi-threaded applica-
tions. For multi-programmed workloads, we consider SPEC
CPU2006 benchmarks [14] to mimic a modern NoC based
TCMP running multiple applications in parallel. We create
different workload mixes based on the re-reference time of
the benchmarks (refer Figure 3), as given in Table 2. same
is a homogeneous workload mix that runs 64 copies of the
same benchmark on all the 64 cores (1×64: 64). low, med and
high workload mixes are created by grouping benchmarks
with low, medium and high re-reference times, respectively.
These mixes run a random combination of 4 different bench-
marks from their groups with 16 copies each (4×16: 64). By
separately profiling each benchmark, we choose a smaller
representative window of instructions to have a tractable
simulation time. We create a total of 45 workload mixes (15
homogeneous, i.e. same, and 10 each for low, med and high)
to extensively evaluate the proposed architectures.

For multi-threaded workloads, we consider PARSEC 3.0
benchmarks [15] to mimic a modern NoC based TCMP
running multiple threads of a single application. We iden-
tify a mix of 6 computation-intensive, communication-
intensive and memory-intensive benchmarks, as given
in Table 2. dedup has huge working sets (computation-
intensive) whereas the working set for streamcluster can be
varied. blackscholes has negligible communication whereas
ferret is very communication-intensive. canneal has the most
demanding memory behaviour (memory-intensive) and so
on. These benchmarks are run individually as a 64-thread
workload on all the 64 cores of the TCMP (1 thread/core).
We consider sim-medium input set of PARSEC 3.0 and eval-
uate the performance on region-of-interest. Altogether, we
have 10 workloads to evaluate and analyse the performance,
4 multi-programmed benchmark mix and 6 multi-threaded

benchmarks. For a relative comparison, all the results are
normalised with respect to the baseline architecture.

5.2 Result Analysis and Discussion

L1 Cache Miss Penalty: It is defined as the number of cycles
required to replace an existing cache block in L1 with an
incoming block. L1 cache miss penalty directly reflects the
effectiveness of the proposed local store and reply optimisa-
tion. Figure 10 shows the normalised L1 cache miss penalty
with respect to the baseline architecture. With local replies,
the proposed architectures reduce the L1 cache miss penalty
for all the simulated workload mixes. In general, CDB-
ETB-TTBF and CDB-ETB-MTBF architectures perform better
compared to others. With more blocks (both clean and dirty)
locally stored in more space (ETB and VCs), CDB-ETB-TTBF
and CDB-ETB-MTBF has more scope for local reply (hits) on
re-reference. CDB-TTBF and CDB-MTBF architectures also
store both clean and dirty blocks in local NoC routers, but
the storage space is limited to VCs. As a consequence, blocks
are frequently moved in and out of the VCs, which reduces
the chance of local hits. A maximum reduction of 21% and
an average reduction of 16% in L1 cache miss penalty is
achieved by our proposed architectures.

Among the multi-programmed workloads, same and low
are outperforming med and high mixes as they have bench-
marks with low re-reference time of evicted L1 cache blocks
(refer Figure 3). Whereas the miss penalty reduction in
multi-threaded workloads is relatively less when compared
with the multi-programmed counterparts. It is due to the
frequent sharing of data among the participating threads
of a particular workload. Keeping evicted L1 cache blocks
stored in local routers for long increases the miss penalty of
other threads waiting in the corresponding L2 cache bank.
In general, TTBF architectures (DB-TTBF, CDB-TTBF and
CDB-ETB-TTBF) perform poorly as they keep evicted, dirty
blocks stored for a certain time threshold (τ ) even if there
are other requesters waiting in the L2 cache bank. On the
other hand, MTBF architectures (DB-MTBF, CDB-MTBF and
CDB-ETB-MTBF) can forward stored blocks as and when a
request is received from the L2 cache bank. For example,
can and fer workloads suffer the most while running in TTBF
architectures as they have the most demanding memory and
communication behaviour, respectively.
Network Stall Time: It is defined as the number of cycles
the processor stalls waiting for a network packet. Network
stall time helps us to understand how storing evicted L1
cache blocks in local routers impact the NoC communi-
cation latency. We prefer network stall time over Packet
Latency/Network Latency as the former is a more appropriate
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Figure 12: System speedup
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Figure 13: Comparison with VCache [21] architecture

metric to evaluate network-related slowdown in NoC based
TCMPs [22]. Figure 11 shows the normalised network stall
time with respect to the baseline architecture. As expected,
across all the simulated workloads, our proposed archi-
tectures significantly reduce network stall time. With local
reply from the routers, we avoid both on-chip travel and
NoC communication delay as given in equation (1). Saving
on-chip travel time indirectly translates into reduced net-
work stall time. A maximum of 21% and an average of 18%
reduction in network stall time is achieved by our proposed
architectures. In TTBF architectures, a stored dirty block is
forwarded for write-back only after the time threshold (τ )
expires. However, with MTBF architectures, a stored dirty
block is forwarded either after the time threshold (τ ) expires
or even earlier if a request from the corresponding L2 cache
bank is received. As a result, all the MTBF architectures
experience less network stall time in general.

Usually, network stall time reduction is relatively less
for communication-intensive workloads when compared to
others. Since these workloads frequently inject packets in
the network, evicted blocks can not be stored in the routers
for long. As a consequence, their chances of local reply
reduce. Additionally, frequent store and forward of evicted
blocks increases the network latency for others. For exam-
ple, the network stall time reduction in high is minimum
when compared with other multi-programmed workloads.
This is because high workload contains leslie3d and lbm
benchmarks which have very high packet injection rate.
Similarly, being the most communication-intensive multi-
threaded workload, fer experience less reduction in network
stall time. Interestingly, bla experiences the lowest reduction
in network stall time even though it has a negligible com-
munication pattern. This is due to the fact that bla is not able
to get the benefit of local store and reply. Even though the
average re-reference time of bla is one of the lowest (refer
Figure 3), the number of re-references are low. So, evicted
blocks just stay in the local router for some time and then
get forwarded or dropped. To mitigate the negative effect
of occupying VCs, Dynamically Allocated Multiple Queue
(DAMQ) buffering schemes can be explored [23].

System Speedup: We use Instructions Per Cycle (IPC)
to compare system speedup between baseline and the
proposed architectures for multi-programmed workloads
(SPEC CPU2006). Whereas, for multi-threaded workloads
(PARSEC 3.0), we use execution time to compare system
speedup. We prefer execution time for multi-threaded work-
loads as they have synchronisation primitives like locks and
barriers, which brings variation in IPC. Figure 12 shows the
normalised system speedup with respect to the baseline ar-

chitecture. From the improvements in L1 cache miss penalty
and network stall time, the increase in system speedup
with the proposed architectures is intuitive. We achieve a
maximum system speedup of 19% and an average system
speedup of 14% for the presented workloads. Usage of
trace buffers in CDB-ETB-TTBF and CDB-ETB-MTBF archi-
tectures significantly improves overall system performance
with frequent local replies from the NoC routers.

5.3 Qualitative Comparison with An Existing Work
Jindal et al. [21][24] proposed to reuse trace buffer em-
bedded in the processor as a victim cache [25] to improve
system performance. The key idea is to re-purpose the trace
buffer (ETB) as a set-associative cache called VCache to hold
recently evicted blocks of L1 data cache. VCache indirectly
increases the size of L1 data cache as they are mutually
exclusive. A block requested by the processor is simulta-
neously searched in both the L1 data cache and VCache.
If the requested block is not found in L1 data cache but the
VCache, it is brought into the L1 data cache by swapping out
another block into the VCache. The authors learn that in si-
multaneous multithreading (SMT), competing threads may
flush cache blocks of each-other from the VCache resulting
in poor performance. Thus, they propose two techniques
to partition the VCache among the participating threads,
which promotes cooperation. These two techniques attempt
to increase VCache utilisation and improve performance.
The concept of VCache and our proposed TTBF/MTBF
architectures are complementary in nature and can be im-
plemented together. However, there are a few important
differences between VCache and the proposed TTBF/MTBF:

• VCache does not differentiate between clean and
dirty cache blocks and flushes them immediately
with incoming blocks. Whereas, TTBF/MTBF seg-
regates clean and dirty blocks in such a way that
dirty blocks are cached in VCs until a certain time
threshold. This optimisation delays/avoids expen-
sive writes to the L2 cache bank. Hence, TTBF/MTBF
indirectly uses VCs like a write buffer [26] and ETB
like a victim cache to improve system performance.

• VCache does not talk about coherence. Cache blocks
stored in VCache can be either in a shared or ex-
clusive state. Frequent data sharing among different
cores (threads) is more prevalent in multi-threaded
applications. VCache is evaluated only for multi-
programmed applications (SPEC CPU2006), and the
discussion about shared memory and the associated
coherence is not included. Whereas, TTBF/MTBF
provides a detailed discussion about how coherence
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Figure 14: Impact of number of VCs
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Figure 15: Impact of trace buffer size

is maintained during local store, reply, forward and
drop of evicted L1 cache blocks. TTBF/MTBF also
adds a new coherence message to make sure that the
states of evicted L1 cache blocks are preserved.

• VCache is set-associative where multiple evicted
L1 data cache blocks will map into the same set.
This may result in a frequent flush of stored blocks
from VCache, which hampers performance. On the
other hand, TTBF/MTBF uses VCs and ETB on NoC
routers like a fully-associative cache. Hence, there
are less conflicts and blocks can be retained longer,
which improves chances of local reply from routers.

• VCache works as an extension of L1 data cache,
and hence it only stores evicted data cache blocks.
Whereas TTBF/MTBF stores all the evicted blocks,
both of data and instruction L1 caches. Additionally,
since TTBF/MTBF use VCs as well as ETB of NoC
routers to store evicted L1 cache blocks, they can
accommodate more evicted blocks simultaneously.

VCache is originally proposed for LEON3 Processor [27]
which can be realised for up to 16 CPU cores. To make a
fair comparison with TTBF/MTBF architectures, we faith-
fully model a 64-core equivalent VCache architecture. Fig-
ure 13 shows the overall system performance comparison of
VCache and the proposed TTBF/MTBF architectures.

CDB-ETB-TTBF and CDB-ETB-MTBF performs better
than VCache in almost all the simulated workloads. Simul-
taneously accommodating more evicted L1 cache blocks,
fewer conflicts during block store, and longer retention of
stored blocks are the key factors. However, VCache per-
forms better than CDB-ETB-TTBF for can and fer workloads.
With the most demanding memory and communication
behaviour, can and fer suffers in CDB-ETB-TTBF that keeps
evicted, dirty L1 cache blocks stored for a certain time
threshold (τ ) even if other requesters are waiting in the
corresponding L2 cache bank. When compared to VCache,

an average of 4% and 8% improvement in system speedup is
seen for CDB-ETB-TTBF and CDB-ETB-MTBF, respectively.

6 SENSITIVITY AND OVERHEAD ANALYSIS

6.1 Impact of Number of VCs
Our first optimisation requires evicted, dirty L1 cache blocks
to be stored in VCs of the local input port. Hence, we explore
the impact of the number of VCs/VN in the proposed archi-
tectures. For all the results discussed so far, we have con-
sidered 4 VCs/VN (as presented in Table 1). However, Fig-
ure 14a and 14b shows how varying the number of VCs/VN
impact the overall system performance. We have given
the results of only CDB-ETB-TTBF and CDB-ETB-MTBF
architectures as they have the best performance in their
respective groups (TTBF and MTBF groups). It is almost
trivial that increasing the number of VCs/VN will improve
system performance. However, an interesting observation
is the performance of architectures with only 2 input port
VCs/VN (CDB-ETB-TTBF-2VC and CDB-ETB-MTBF-2VC).
The main reason for a performance gain despite having
only 2 VCs/VN in the local input port is the presence of
ETB. A good number of re-references are locally replied
with the stored clean blocks from ETB that contributes to
the improvement in overall system performance.

6.2 Impact of Trace Buffer Size
Our second optimisation requires evicted, clean L1 cache
blocks to be stored in the embedded trace buffer (ETB) of
NoC routers. Hence, we explore the impact of ETB size
in the proposed architectures. For all the results discussed
so far, we have considered size of ETB as 2KB (usually
the minimum size). However, Figure 15a and 15b shows
how varying the size of ETB impact the overall system
performance. With our optimisation, ETB in NoC routers
can be viewed as a cache that holds recently evicted, clean
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Figure 16: Smallest re-reference time
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L1 cache blocks. As we increase the size of the ETB, we get
appropriate improvement in the system performance.

6.3 Impact of Time Threshold

To make sure that the evicted, dirty L1 cache blocks are not
stored for too long and penalise others, we proposed TTBF
that uses a time threshold (τ ). For all the results discussed so
far with TTBF architectures (DB-TTBF, CDB-TTBF and CDB-
ETB-TTBF), we have considered τ as 256 cycles. Intuitively,
the optimal value of τ should be 12150 cycles, equal to the
average re-reference time of evicted L1 cache blocks (refer
Figure 3). However, keeping a block stored for such a long
duration delays execution of others who are expecting the
block in the corresponding L2 cache bank. This scenario
is more prevalent in multi-threaded workloads, where a
lot of data sharing happens among the participating cores.
Hence, we perform an empirical study to find the optimal
value of τ . We use an incremental approach and begin from
the smallest re-reference time of evicted L1 cache blocks.
Figure 16 shows that the smallest re-reference time of all
the benchmarks we have considered is under 80 with an
average of 48 cycles. So, we begin with the value of τ as 64
cycles and incrementally change it to 128, 256, 512 cycles and
more. Figure 17 shows how varying the value of τ impact
overall system performance. Based on the observation in
Figure 17, we considered τ as 256 for our evaluation.

However, for all the results with MTBF architectures
(DB-MTBF, CDB-MTBF and CDB-ETB-MTBF), we kept τ as
16384 cycles; smallest power of 2 which is large enough
for the average re-reference time (12150 cycles). This is
not optimal rather an intuitive time threshold to increase
our chances of local reply. Now, an evicted, dirty L1 cache
block is forwarded towards destination either after getting a
second acknowledgement for write-back (refer Section 4.4.2)
or after 16384 cycles, whichever is earlier. Thus, MTBF
architectures optimise performance by triggering a block
forward based on a message as well as a time threshold.

6.4 Storage, Area and Power Overhead

We use 4 additional bits (Evicted, Clean, Miss and Forward) in
the message/packet header (refer Figure 5) to facilitate the
working of LSR-FD unit. Our NoC uses 128-bit flit channel
(refer Table 1) and a typical packet header (head flit) is much
smaller (≈ 64 bits). So, we can accommodate the additional
4 bits in the head flit without any storage overhead.

Since LSR-FD unit works in parallel to the RC unit (refer
Section 4.1), it is not in the critical path of execution. In
Algorithm 1, lines 7-28, 29-34, 35-40 and 41-48 can execute

Table 3: Overhead compared to the baseline

Overhead CDB-ETB-TTBF CDB-ETB-MTBF

Area ↑ 2.23% ↑ 2.58%
Static (Leakage) Power ↑ 3.71% ↑ 3.94%

Dynamic Power ↓ 5.06% ↓ 6.12%

in parallel to complete the working of LSR-FD unit in time
to avoid the critical path. However, the addition of LSR-
FD unit in NoC routers contributes to the area and power
overhead. As we have 4 VCs/VN and the local input port
requires to have a time threshold counter (τi) for each VC,
we add binary down counters2. Among the 3 VNs (refer
Table 1), VN2 carries evicted cache blocks. Hence, we add
only four 8-bit binary down counters (1 counter/VC for
VN2) in TTBF architectures to count from 255 down to 0.
Whereas, 14-bit binary down counters are added in MTBF
architectures to count from 16383 down to 0. As a result,
the addition of these counters also contributes to the area
and power overhead. The MUX-DEMUX pair of M and D
(refer Figure 4) and the connecting links also contribute to a
negligible area and power overhead. Embedded trace buffer
(ETB) was always present in NoC routers in power-gated
mode. So, ETB does not contribute to the area but only to
the power overhead. We use McPAT [28] at 22nm processor
technology and feed the configuration and output files of
gem5 [18] to get the area, leakage and dynamic power
overheads. We present the percentage increase/decrease in
overhead for CDB-ETB-TTBF and CDB-ETB-MTBF architec-
tures compared to the baseline in Table 3. While we get
negligible area and leakage power overhead due to the
additional circuits, dynamic power is reduced due to the
significant improvements in overall system performance.

During post-silicon debug and validation, ETB is typ-
ically used for functional test. ETB requires to monitor
internal signals in real time for functional bugs. Hence,
ETB operates at full system clock frequency, and there is
no additional delay while using it in our optimisation.
However, even though the usage of ETB post production
is very rare, but it is possible. In such a scenario, during
the time the ETB is used for debug and validation, CDB-
ETB-TTBF and CDB-ETB-MTBF architectures will behave
like CDB-TTBF and CDB-MTBF architectures, respectively.

7 RELATED WORKS

Existing literature explored different possibilities for effi-
cient utilisation of NoC resources. Since our work is about

2. An N-bit binary down counter counts from 2N − 1 to 0.
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using NoC as a storage, our discussion is limited to the
related works where NoC is projected in that light. One of
the first works that attempted to change the abstraction of
NoC from communication to storage is by Mizrahi et al. [29].
They advocated that NoC can be included in the memory
hierarchy by placing a small cache in the routers. Going
forward in the same line, Eisley et al. [30] decoupled cache
from coherence and proposed to keep only the coherence di-
rectories in NoC. Using the stored directories, they designed
a coherence protocol within the NoC routers. Yanamandra
et al. [31] combined the advantages of both and proposed to
keep frequently used cache blocks along with the coherence
directories in NoC routers. There are other significant works
that are focused towards NoC aware cache and coherence
implementations [32][33][34]. However, almost all the pro-
posed works employed additional storage in NoC routers.

A new direction has gained popularity where the unused
DfD hardware that were added for post-silicon debug and
validation are viewed as a storage. For example, Jindal et
al. [21][24] have re-purposed DfD hardware for improving
the cache performance by using them as a victim cache. DfD
hardware are also used to store critical information for run-
time verification and system security [35][36]. Specifically,
in the context of NoC, embedded trace buffers (ETBs) in
routers are used as extended VCs to improve communica-
tion [37][38]. However, extending VCs might not be benefi-
cial in input buffered NoC routers, where existing VCs are
already underutilised [3][4][5] (refer Section 2.2).

Sanchez et al. [6] provided a key insight that NoC is
responsible for 60-75% of the miss latency in TCMPs. They
argued that as NoC based TCMPs continue to scale, con-
sidering NoC and memory hierarchy together is the way
forward. In a promising new attempt, Das et al. [39][40]
recently proposed to exploit underutilised VCs of local NoC
routers to store some evicted cache blocks. They attempted
to reply future references to such blocks from the local
routers and reduce miss penalty. A similar work on NoC
based consumer electronics is also available [41]. However,
none of these works considered all the evicted L1 cache
blocks. In this work, we extend [39] to store evicted, dirty
L1 cache blocks in VCs and clean L1 cache blocks in ETB of
local NoC routers. Future references to recently evicted L1
cache blocks are replied either from the VCs or the ETB.

8 CONCLUSION

In this work, we explored opportunities to store recently
evicted L1 cache blocks in NoC to reduce cache miss penalty.
We identified underutilised input port buffers and unused
embedded trace buffers as potential storage space in NoC
routers. We proposed multiple architectures to store recently
evicted cache blocks in NoC routers and facilitate direct
reply when such blocks are re-referenced. We also proposed
two techniques to forward stored, dirty cache blocks for
write-back and a technique to drop stored, clean cache
blocks. To preserve the state of evicted cache blocks and
maintain coherence, we also propose an additional coher-
ence message. We experimentally validated that the pro-
posed architectures have the potential to reduce cache miss
penalty and improve overall system performance. Since the

proposed optimisations are on NoC, they can be easily
integrated into any existing optimisation in the memory.
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