
Multi-Objective Hardware-Mapping Co-Optimisation
for Multi-Tenant DNN Accelerators

Abhijit Das∗, Enrico Russo† and Maurizio Palesi†
∗Univ Rennes, Inria, France
†University of Catania, Italy

abhijit.a.das@inria.fr, enrico.russo7@studium.unict.it, maurizio.palesi@dieei.unict.it

Abstract—To meet the ever-increasing computation demand
from emerging workloads, a scalable design paradigm combines
multiple Deep Neural Network (DNN) accelerators to build a
large multi-accelerator system. They are mainly proposed for
data centers, where workload varies across vision, language,
recommendation, etc. Existing works independently explore their
hardware configuration and mapping strategies due to the
extremely large cross-coupled design space. However, hardware
and mapping are interdependent and, if not explored together,
may lead to sub-optimal performance when workload changes.
Moreover, even though a data center accelerator has multiple
objectives, almost all the existing works prefer aggregating them
into one (mono-objective). But aggregation does not help if the
objectives are conflicting, as improving one will worsen the other.

This work proposes MOHaM, a multi-objective hardware-
mapping co-optimisation framework for multi-tenant DNN accel-
erators. Specifically, given an application model and a library of
heterogeneous, parameterised and reconfigurable sub-accelerator
templates, MOHaM returns a Pareto-optimal set of multi-
accelerator systems with an optimal schedule for each one of them
to minimise the overall system latency, energy and area. MOHaM
is evaluated for diverse workload scenarios with state-of-the-art
sub-accelerators. The Pareto-optimal set of competitive design
choices enables selecting the best one as per the requirement.

I. INTRODUCTION

Deep Neural Network (DNN) accelerators drives the era
of Domain-Specific Architectures (DSAs). From edge [2] to
the cloud [5], they are ubiquitous to enable performance im-
provement for different workloads. To meet the ever-increasing
computation demand from emerging workloads, a scalable
design paradigm combines multiple sub-accelerators to build
a large accelerator system. Existing works have explored the
combination of both, homogeneous as well as heterogeneous
sub-accelerators [50][5][4][8][12][18][33][35][28]. Concep-
tual view of a multi-accelerator system is shown in Figure 1.

Due to limited area and power budget at the edge, multi-
accelerator systems are usually employed in the cloud, i.e.,
data centers. Two of the most important factors deciding a
DNN accelerator performance are its hardware configuration
and mapping strategy. Their design spaces are extremely large
and hence are often explored independently [24][23][53][26].
With multiple sub-accelerators, these design spaces are only
becoming larger in multi-accelerator systems. For example,
MAGMA [28] reported the design space of mapping alone
to be of size O(1e81). However, hardware and mapping are
interdependent and, if not explored together, may lead to
sub-optimal performance when workload changes [32]. As

M
em

o
ry

(H
B

M
/D

R
A

M
)

SA-2

SA-2

SA-3
SA-1

SA-1

SA-4

SA-3

SA-1

PE

PE

PE

G
lo

b
al

B
u

ff
er

PE

PE PE

Lo
ca

l
B

u
ff

er

MAC

MACMAC

MAC

. . .

. . .

. . .

. .

. .
R

R

RR

R

RR

R

Figure 1: A DNN multi-accelerator system.

multi-accelerator systems are proposed for data centers, where
workload varies across vision, language, recommendation,
etc., each with different variants of DNNs [7][41], hardware-
mapping co-optimisation is very important and timely. Some
works on co-optimisation are available [29][48][55][57], but
they do not discuss multi-accelerator systems due to the
obvious challenge of huge cross-coupled search space. Ta-
ble 1 presents the existing works on multi-accelerator systems,
where Planaria [18] and Herald [33] are the only ones attempt-
ing co-optimisation. Nevertheless, Planaria lacks dataflow flex-
ibility, and both of them rely on heuristic-based (manually-
designed) decision-making. This limits their scalability to-
wards diverse sub-accelerators and emerging workloads.

A primary enabler of scalability in data centers is multi-
tenancy, where different DNN models are simultaneously
executed on an accelerator. Multi-tenancy trivially becomes
a key aspect in multi-accelerator systems as they house sub-
accelerators supporting diverse DNNs. As given in Table 1,
quite a few existing works have support for multi-tenancy.
However, except MAGMA [28], which uses Genetic Algo-
rithm (GA), all employed manually-designed support, which
may limit accelerator utilisation and deployment benefits.

Designing an accelerator for data center often has more than
one objective, like a subset of latency (delay), throughput,
energy, area, temperature, etc. A convenient way of explo-
ration preferred in the existing works is the aggregation of
multiple objectives into one (mono-objective), say, Energy-
Delay-Product (EDP). However, a chosen group of objectives
might be conflicting with one another; in which case, aggre-
gation does not help. Hence, a multi-objective exploration is
necessary for identifying multiple design points to select the
most suitable one according to the requirement. MEDEA [48]

1

Table 1: Comparison of existing works on multi-accelerator
systems based on design space exploration of hardware, map-
ping, multi-tenency (Mul-Ten) and multi-objective (Mul-Obj).

Work Hardware Mapping Mul-Ten Mul-Obj

Simba [50] é Ë é é
TPUv4 [5] é Ë − é
CS-2 [4] é Ë é é

AI-MT [8] é Ë Ë é
PREMA [12] é Ë Ë é
Planaria [18] Ë Ë Ë é
Herald [33] Ë Ë Ë é

VELTAIR [35] é Ë Ë é
MAGMA [28] é Ë Ë é

MOHaM Ë Ë Ë Ë

is the only work focusing on true multi-objective exploration
of DNN accelerators. As given in Table 1, none of the existing
multi-accelerator systems have explored in this direction.

This work proposes a Multi-Objective Hardware-Mapping
co-optimisation framework (MOHaM) for multi-tenant DNN
accelerators 1. It is the first attempt at simultaneous exploration
of hardware configuration and mapping strategy for multi-
tenancy with multiple distinct objectives. Specifically, the
proposed work makes the following major contributions:

1) Given an application model and a library of heteroge-
neous, parameterised and reconfigurable sub-accelerator
templates, MOHaM returns a Pareto-optimal set of
multi-accelerator systems with an optimal schedule for
each one of them to minimise latency, energy and area.

2) To search the enormous design space, MOHaM extends
the NGSA-II [14] multi-objective GA with several cus-
tom genetic operators specific to the problem definition.
This improves the search efficiency and makes MOHaM
much faster than the standard optimisation techniques.

3) Experimental evaluation with diverse workload sce-
narios and state-of-the-art sub-accelerators show that
MOHaM is able to generate competitive design points
considering all the objectives. To the best of the author’s
knowledge, this is the first work offering hardware-
mapping co-optimisation, support for multi-tenancy and
multi-objective exploration, all in a single framework.

II. BACKGROUND

A. Multi-Accelerator System

As shown in Figure 1, it is a coming together of multi-
ple DNN accelerators (called sub-accelerators in the bigger
context). To ensure scalability, this work considers a Multi-
Chip-Module (MCM) based multi-accelerator system, like
Simba [50], where each of the Sub-Accelerators (SAs) is a
chiplet connected by a Network-on-Package (NoP). However,
unlike Simba, which combines homogeneous chiplets, the
multi-accelerator system in this work considers heterogeneity
to support diverse DNN models and emerging workloads.

1MOHaM will be available on GitHub after acceptance.

1) Sub-Accelerator Architecture: Each SA is a standard
DNN accelerator with an array of Processing Elements (PEs)
and a shared Global Buffer (GB) [9]. Each PE houses one or
more Multiply-Accumulate (MAC) units to compute partial
sums and a Local Buffer (LB) to store them. GB collects
weights and activations from the memory (HBM/DRAM)
through the NoP and distributes them to the LBs through
the Network-on-Chip (NoC). Similarly, outputs are written
from LB to GB and then to memory through NoC and NoP,
respectively. Existing literature has many promising DNN
accelerators that could be used as an SA chiplet to build a
multi-accelerator system [43][50][10][3][6][40][20][15].

2) DNN Models: Data center workloads mainly revolve
around vision, language and recommendation-based DNN
models [7][46][41]. Based on the shape and operation, dif-
ferent layers of a DNN model may have a specific dataflow
preference. However, most of the SAs are usually optimised
for some specific layers with a fixed dataflow [33]. Figure 2a
shows how the normalised EDP varies when the same DNN
model is run on different SAs. Here, three dominant layers,
Convolution CONV 0 and CONV 33, and Fully Connected
FC 121 from the ResNet50 DNN model [21] are considered.
These layers are individually run on row-stationary (Eye-
riss [9]), weight-stationary (Simba [50]) and output-stationary
(ShiDianNao [15]) SAs. Similar observations are available
in the literature [33][57][39][32][34] but the objective here
is to advocate for flexible accelerators. A multi-accelerator
system for data centers should consider heterogeneous SAs
for dataflow flexibility to diverse and emerging DNN models.

B. Hardware-Mapping Co-Optimisation

A typical hardware-mapping co-optimisation framework
takes as input, a target DNN model, an optimisation objective
(e.g. latency) and the resource constraints (e.g. area). It returns
as output a hardware configuration with the optimal instances
of resources and an optimal mapping strategy to run the DNN
model on the accelerator. This co-optimisation can be used at
design-time to build a more efficient accelerator. However, the
search space is extremely large as it is the cross-product of
hardware and mapping. For example, DiGamma [29] recently
reported a design space as large as O(1036), and that is only
for a single accelerator. The same space for a multi-accelerator
system could reach up to O(1055) with just 4 ResNet50-like
DNN models and 16 SAs, by using equation (1) through (5).

III. MOTIVATION

Figure 2b and 2c shows a conceptual representation of the
design space exploration with three optimisation objectives,
energy (x-axis), latency (y-axis) and area (size of the design
points). Figure 2b shows design points with hardware-only
optimisation (blue), mapping-only optimisation (red), and co-
optimisation (yellow). The blue design points, in general,
have lower energy and area as a result of optimal hardware
resources but relatively higher latency due to fixed mapping
strategy. On the contrary, the red design points have lower
latency as a result of optimal mapping strategy but a fixed area

2

ResNet50 Layers

N
or

m
al

is
ed

 E
D

P

0.00

0.25

0.50

0.75

1.00

CONV_0 CONV_33 FC_121

Eyeriss Simba ShiDianNao

(a)

A B

C

Energy

L
a

te
n

c
y

0

2

4

6

8

10

0 2 4 6 8 10

Hardware Mapping Co-optimisation

(b)

B

A

Energy

L
a

te
n

c
y

0

2

4

6

8

10

0 2 4 6 8 10

Mono-Objective Multi-Objective

(c)

Figure 2: Need for heterogeneity, co-optimisation and multi-objective exploration.

(all are of the same size!) due to fixed hardware configuration.
The yellow design points do not follow a fixed pattern and
provide some interesting options. For example, with a small
increase in area than the mapping-only optimisation, design
point A has much lower energy and latency. The increased area
due to additional hardware resources allows a better mapping
strategy (co-optimisation). Design point B shows that an area
slightly lower than A has no impact on latency but increases
energy. Design point C shows that a small compromise on
latency can significantly improve energy as well as area. In
this way, co-optimisation may offer competitive design points.

The conventional way of aggregating multiple optimisation
objectives into one (mono-objective) is shown in blue in
Figure 2c. This practice offers a single design point which
might not be optimal if objectives conflict. For example, due
to the chosen memory hierarchy, if the system bandwidth is
insufficient to feed enough data into the compute (MAC) units,
they remain underutilised. In such a scenario, two mapping
strategies may output identical latency but varying hardware
resource utilisation, hence different energy and area. Similarly,
it is possible to either access an enlarged on-chip buffer
or the next-level buffer (memory) within the same energy
budget. In such a scenario, even two hardware-mapping co-
optimisations may output identical energy but different latency
and area. These scenarios can be expressed as a set of non-
dominating design points (multi-objective), as shown in red in
Figure 2c. These Pareto-optimal set of distinct multi-objective
solutions allow simultaneously exploring accelerator designs
with varying requirements. To give a specific use case, suppose
the accelerator needs to be deployed for remote robotic surgery
with hard real-time constraints. Then design point A with the
lowest latency is preferred without bothering about energy
and area. In another use case, energy and area are paramount
when the accelerator is deployed for consumer wearables like
smart glasses. Design point B could be the preferred choice
then. These factors motivated the MOHaM framework to target
multi-objective co-optimisation in multi-accelerator systems.

IV. PROBLEM FORMULATION

This section first defines the inputs and outputs of the
proposed MOHaM framework, then formulates the exploration
problem and finally computes the size of the search space.
Most of the acronyms/abbreviations and terms used to explain
the MOHaM framework are presented in Table 2 for reference.

A. Definitions

Definition 1. A DNN model is a directed graph DNN =
G(L,D) where L is the set of layers and D is the set of
dependencies between layers. For example, a layer dependency
d = (li, lj) ∈ D, li, lj ∈ L states that layer lj can be executed
only after layer li. A layer l ∈ L has a set of properties like,
the type of layer (e.g., CONV 0, FC 121), the shape of input
activation and weights (e.g., width, height, channels), etc.

Definition 2. An Application Model, AM(L,D), is a set of
DNN models {DNNi(Li, Di)} where L = ∪iLi and D =
∪iDi. The DNN models within an AM are assumed to be
independent of each other and thus can be executed in parallel.

For example, AM for an Augmented Reality (AR) application
will have multiple DNN models, each with a specific task like
object detection, gesture identification, depth estimation, etc.
Figure 3(a) shows an AM formed by three DNN models.

Definition 3. A Sub-Accelerator Template, SAT , is a param-
eterised and reconfigurable DNN accelerator supporting dif-
ferent hardware configurations as well as mapping strategies.

For example, a modifiable Simba chiplet [50] could be a SAT .

Definition 4. A Sub-Accelerator Instance, SAI , is an instance
of a SAT configured with specific values to its parameters.

For example, Simba SAT becomes a Simba SAI when
its configurable parameters are given values, like, 128 PEs,
256 KiB GB, 32 KiB LB, weight-stationary dataflow, etc.

Definition 5. A Network-on-Package (NoP) is a directed
graph NoP = G(T,C) where T is the set of tiles and C is
the set of communication links. A tile t ∈ T hosts a SAI and
has a router to communicate with other tiles in the package.

Definition 6. A Multi-Accelerator System, MAS, is a tuple
⟨SSAI,NoP, SMI, PF ⟩ where SSAI is the set of heteroge-
neous SAI chiplets and SMI is the set of Memory Interfaces
(MIs) for external HBMs/DRAMs, all connected together
by the NoP . PF is the placement function such that for a
SAI ∈ SSAI or a MI ∈ SMI , it returns the hosting tile.

Figure 3(d) shows a MAS created by eight SAIs and an
external memory, interconnected by an NoP . The SAIs are
instances of four parameterised and reconfigurable SAT s, as
shown in Figure 3(b). For example, SAI0.0, SAI0.1 and
SAI0.2 are three different instances of SAT0 and so on.

3

Definition 7. A Schedule, S(MAS,AM), for an AM(L,D)
is a directed bipartite graph S = G(L, SSAI,D+,M) where
D+ ⊇ D is the set of edges that models the dependencies
among layers at the application level. M is the set of edges
that maps a layer l ∈ L into a chiplet SAI ∈ SSAI .

For example, Figure 3(e) shows a schedule for the AM
in Figure 3(a) and the MAS in Figure 3(d). D+ and M
are shown by black and red edges, respectively. D+ might
contain dependencies like d′ and d′′ that are not present in D.
Both, L0.3 of DNN0 and L2.2 of DNN2 are mapped onto
SAI3.0. d′ defines the execution order and dictates that L0.3
be run only after L2.2. Similarly, d′′ dictates L0.3 be run first.

B. Problem Formulation

Given an application model, AM , and a library of heteroge-
neous, parameterised and reconfigurable sub-accelerator tem-
plates, SAT s, find the Pareto-optimal set of multi-accelerator
systems, MAS, and an optimal schedule, S, for each one of
them to minimise the overall system latency, energy and area.

C. Search Space

Search for the Pareto-optimal set of solutions involves a
design space exploration that is an n-fold Cartesian product of
SA hardware space, SA mapping space, layer-to-SA mapping
space, SA-to-tile mapping space, and schedule space.

Major SA hardware includes PEs, MACs, GB, LB, etc. For
each SAT , let np be the number of free parameters and v be
the number of configurable values a free parameter can have.
Then for the entire SSAI , the size of SA hardware space is:

vnp × |SSAI| (1)

DNN models are represented by tensors, and their compu-
tation involves multiple loops. A dataflow defines the loop
order, parallelism and clustering, and is usually expressed in
a loop-nest form [9][57][33][29]. Mapping determines tiling,
i.e. how tensors are sliced, stored and transferred across the
memory hierarchy, and uses a dataflow to map a layer l into
an SAI . Let nl be the depth of loop-nest, C and K be the
input and output channels, Y and X be the width and height
of input activation, and R and S be the width and height of
weights. For AM(L,D), the size of SA mapping space is:

nl!× 2nl × (C ×K × Y ×X ×R× S)× |L| (2)

where, nl! is the loop order, 2nl is for parallelism and
clustering, and (C ×K × Y ×X ×R× S) is for the tiling.

As each layer of the AM(L,D) can be mapped onto each
of the SAIs, the size of layer-to-SA mapping space is:

|L| × |SSAI| (3)

Each SAI can be mapped onto a tile t of the NoP . Let the
number of tiles corresponds to the number of SA instances
(i.e., |T | ≡ |SSAI|). Then the size of SA-to-tile mapping
space is the permutation of SAs in different tiles, which is:

|SSAI|! (4)

Table 2: Acronyms/abbreviations and terms used for MOHaM

AM Application Model; a set of independent DNN models.
SAT Sub-Accelerator Template; a parameterised and reconfig-

urable DNN accelerator with a fixed memory hierarchy.
SAI Sub-Accelerator Instance of a SAT with fixed parameters.
MAS Multi-Accelerator System; a set of SAIs.
S Schedule; temporal and spatial allocation of all the DNN

model layers of an AM on the SAIs of a MAS.
NSGA-II Non-Dominated Sorting Genetic Algorithm [14].
Gene A tuple of encoded values for a layer or an SA instance.
Genome An array of genes that represent either all the information

about layers or SAIs, like mapping, execution order, etc.
Chromosome A concatenation of genomes of all the layers and SAIs.
Individual A chromosome with valid mapping, SAI and execution

order of the layers, and SAT and NoP tiles for the SAIs.
Population A set of individuals evolving through GA generations.
Pareto
Efficiency

An individual is Pareto-efficient if no one else in the
population is better for all the objectives at the same time.

Topological
Sort

A linear ordering of a Directed Acyclic Graph (DAG)
where a node appears before all the nodes it points to.

Finally, let each DNN model of an AM(L,D) has l layers,
and none are parallel. If the AM(L,D) is formed by nd
parallel DNN models, the size of the schedule space is:

(nd!× l)× lnd (5)

The complete search space is the product of equation (1)
through (5), and changes factorially with the number of DNN
models, SAs and the depth of loop-nest in the AM(L,D).

V. THE MOHAM FRAMEWORK

To search the enormous design space, the proposed MO-
HaM framework adopts a two-step approach, layer mapping
and global scheduling. In the first step, each layer of the
AM(L,D) is mapped onto each of the SAT s available in
the input library. Then the Pareto-optimal set of mappings
found for each layer is used in the second step to search the
global scheduling. MOHaM is written in C++ and uses the
Timeloop [39] + Accelergy [54] framework for realising both
the steps. Algorithm 1 presents a high-level flow of MOHaM,
and the following sub-sections describe its working in detail.

A. Layer Mapper

Let SSAT be the set of SAT s available in the input library.
As per equation (3), if each layer of the AM(L,D) is mapped
onto each of the SAT s, the search space can be as large as
|L|×|SSAT |. However, two layers, li, lj ∈ L can be instances
of the same workload, i.e., have the same problem dimensions.
Hence, in an attempt to reduce the layer mapping search space,
MOHaM only maps the unique layers to each of the SAT s.

Let Ml,f,i be a mapping for a layer l ∈ L in an SA
template f ∈ SSAT . Ml,f,i is a choice of a specific tiling,
loop ordering, paralellism and clustering in f . Now, let MFl,f

be the Pareto-optimal set of mappings with respect to latency,
energy and area for l in f . MFl,f can be represented by:

MFl,f = {Ml,f,i | i = 0, . . . , (ml,f − 1) } (6)

4

for k1 = [0 : K1) :
parallel_for k0 = [0 : K0) :

for c1 = [0 : C1) :
for y1 = [0 : Y1) :

for x1 = [0 : X1) :
parallel_for c0 = [0 : C0) :

for r1 = [0 : R) :
for s1 = [0 : S) :

for y0 = [0 : Y0) :
for x0 = [0 : X0) :

for r = [0 : 1) :
for s = [0 : 1) :

k = k1 * K0 + k0
c = c1 * C0 + c0
. . .
x = x1 * X0 + x0
Output[k][y][x] +=
Input[c][y+r][x+s] *
Weight[k][c][r][s]

L2.3

L2.0 L2.1 L2.2 L2.4

(a) Application Model (AM)

L0.0DNN0 L0.1 L0.2 L0.3

L1.1

L1.2

L1.0DNN1 L1.3

L2.3

L2.0DNN2 L2.1 L2.2 L2.4

(b) Sub-Accelerator Template (SAT) Library

SAT0 SAT2

SAT1

SAT3

MOHaM

M
em

o
ry

(H
B

M
/D

R
A

M
)

SAI1.0

SAI1.1

SAI2.0
SAI0.0

SAI0.2

SAI3.0

SAI2.1
SAI0.1

PE

PE

PE

G
lo

b
al

B
u

ff
er

PE

PE PE

Lo
ca

l
B

u
ff

e
r

MAC

MACMAC

MAC

. . .

. . .

. . .

. .

. .
R

R

RR

R

RR

R

(d) Multi-Accelerator System (MAS)

L0.0 L0.1 L0.2 L0.3

SAI3.0SAI2.1SAI2.0SAI1.1SAI1.0SAI0.2SAI0.1SAI0.0

L1.1

L1.2

L1.0 L1.3

L2.4

d’

d’’

Energy

La
te

n
cy

(c) Pareto-Optimal Solutions

(d) MAS
(e) S (MAS, AM)

(e) Schedule S (MAS, AM)

Figure 3: Working of the MOHaM framework.

Algorithm 1 MOHaM High-Level Flow

procedure LAYERMAPPER(AM,SSAT)
MG← {}
for layer in UNIQUELAYERS(AM) do

ML← {}
for arch in SSAT do

MF ← RUNMEDEA(layer, arch)
ML.ADD(MF)

end for
MG.ADD(ML)

end for
return MG

end procedure

procedure GLOBALSCHEDULER(AM,SSAT,MG)
PP ← INITIALPOPULATION()
for g ← 1 to G do ▷ G is the number of generations

OP ← APPLYCROSSOVEROPERATORS(PP)
OP .APPLYMUTATIONOPERATORS(OP)
OP .EVALUATE()
MP ← FASTNONDOMINATEDSORTING(PP,OP)
OP ← SURVIVAL(MP)

end for
return PP .GETPARETOEFFICIENTINDIVIDUALS()

end procedure

procedure MOHAM(AM,SSAT)
MG← LAYERMAPPER(AM,SSAT)
ST ← GLOBALSCHEDULER(AM,SSAT,MG)
return ST ▷ Return Pareto Set of Schedulings

end procedure

where, ml,f is the number of Pareto-optimal mappings. Now,
let MLl be the Pareto-optimal set of mappings for l in all the
input SA templates of SSAT . MLl can be represented by:

MLl = {MFl,f | f = 0, . . . , (F − 1) } (7)

where, F is the number of input SA templates, i.e., |SSAT |.
Finally, let MG be the Pareto-optimal set of mappings for
all the layers of AM(L,D) in all the input SA templates of
SSAT . MG can be represented by:

MG = {MLl | l = 0, . . . , (L− 1) } (8)

where, L is the number of layers in the AM(L,D). To obtain
the Pareto-optimal sets in equation (6) through (8), MOHaM
leverage state-of-the-art MEDEA [48] infrastructure. For the
optimisation objectives, latency, energy and area, MEDEA
searches for a Pareto-optimal set of mappings for a layer
on a SAI employing a GA with custom operators. MEDEA
can only map a single layer on a single accelerator, while
MOHaM has the capability for multi-DNN models and multi-
accelerator systems. MOHaM decides SAIs, their hardware
parameters, and schedule layers with appropriate mappings
and SAIs. Hence, as given in Algorithm 1, MEDEA is just
one component of MOHaM’s complex multi-objective search.

B. Global Scheduler

It is based on one of the most widely accepted multi-
objective GA, NGSA-II [14]. It has five major phases, sam-
pling, selection, crossover, mutation and survival. The sched-
uler uses the original selection and survival phases of the
NGSA-II. However, multiple custom genetic operators are
implemented for problem-specific crossover and mutation,
and also for increasing the sampling efficiency to find better
individuals in less time. The global scheduler of MOHaM

5

1 2 0 2 0 5 0 2 4 1 1 12 0 3 2 1

Hardware Genome Software Genome

Application ModelPareto Mappings

 � Chromosome

SA Template ID

Gene (SA) Gene (Layer)

SA Instance ID Mapping ID

SA Instance ID

Layer ID

SAI2.1 SAI2.0
SA0

SA1

L0 (M5) L1 (M12)

L2 (M4) L3 (M2)

Time

Space

MF0,2

L 0
L 1

L 2
L 3

Sub-Accelerator Template Library

SAT0 SAT1 SAT2

43
2

1

0

Heterogenous Accelerator Scheduling

Decoding

Figure 4: MOHaM global scheduler chromosome structure.

returns a Pareto-optimal set of MAS and an optimal S for
each one of them with minimum latency, energy and area.

1) Chromosome Encoding: One of the most fundamental
and important steps in employing a GA is to define an encod-
ing for the individuals in the population. MOHaM requires
this encoding to represent, (a) mapping strategy of each layer,
(b) SAI of each layer, (c) execution sequence of layers in
the AM(L,D), (d) SA template of each SAI , and (e) NoP
tile of each SAI . Hence, the global scheduler uses a two-part
chromosome, as shown in Figure 4. The two parts are:

• Software Genome: It encodes the layers of the
AM(L,D). It is an array of genes, where each gene
denotes a layer. Each gene is a tuple ⟨LI,MI, SAI⟩
where LI is the layer identifier, MI is the mapping
identifier, and SAI is the SA instance the layer will
be executed. The order of the genes is a topological
sorting of the layers using Kahn’s algorithm [25] and
represents the temporal sequence in which the layers will
be executed. The number of genes is equal to the number
of layers in the AM(L,D) and is fixed for chromosomes.

• Hardware Genome: It encodes the instances of the
SSAT . It is an array of genes, where each gene denotes
a SA instance. Each gene is a tuple ⟨SAI, SAT ⟩ where
SAI is the SA instance and SAT is the template iden-
tifier. The order of the genes represents position of the
SAI hosting tile in the 2D Mesh NoP. The number of
genes is equal to the number of SA instances and varies
between 1 and maximum NoP tiles across chromosomes.

2) Custom Genetic Operators: Each chromosome must
respect certain constraints for it to represent a valid individual.
For example, the topological sorting of layers in the software
genome must be valid. It has to be a traversal where a layer
is placed only after all its dependencies. Similarly, the SAI
of a layer must refer to one of the encoded genes in the
hardware genome. Furthermore, the MI of a layer must refer
to one of the mappings in the MFl,f . In order to improve
the search efficiency, a set of custom genetic operators are
implemented that considers these constraints. The operators
either avoid generating invalid combinations or use compen-
sation mechanisms. Operators targeting the topological sorting

in the software genome are similar to [56]. MOHaM-specific
genetic operators are shown in Figure 5 and are described here:

• Scheduling Crossover: It combines the topological sort-
ing of the parent chromosomes, as shown in Figure 5(a).
It generates offspring by taking the first part of one of the
parents, i.e., all the genes before the crossover point, and
appending all the unique genes from the other parent.

• Scheduling Mutation: It mutates the topological sorting
of a chromosome, as shown in Figure 5(b). Let li be
a random gene (layer). Let lj be the nearest layer in the
traversal that is dependent on li. Let lk be a random gene
between li and lj . If all the layers lk has a dependency lie
before li in the traversal, their position can be swapped.

• Mapping Mutation: It modifies the MI of a random
layer li to mutate a chromosome, as shown in Figure 5(c).
The possible mappings for a layer will be in the MLl,f .
One of those mappings is assigned to the li for mutation.

• Mapping Crossover: It combines the mappings of the
parent chromosomes, as shown in Figure 5(d). It gener-
ates offspring by taking layer mappings from the first part
of one of the parents, i.e., from all the genes before the
crossover point, and the remaining ones from the other
parent. However, the mapping for a layer (gene) might
not be valid if the SA instance is of a different template.
In that case, a compensation mechanism called Mapping
Transform is applied to find the most similar one among
all the possible mappings for the layer in that SA instance.

• SA Crossover: It swaps a random SA instance si be-
tween the parent chromosomes, as shown in Figure 5(e).
If both parents A and B have an instance with the same
identifier si, they are swapped and two offspring are
generated. If si of A and si of B are of different SA
templates, all the mappings from both of their layers
undergo mapping transformation. If si is only in one of
the parents, it is added to the other parent with all its
assigned layers. Then only one offspring is generated.

• SA Splitting Mutation: It reduces the load in a random
SA instance si to mutate a chromosome, as shown in
Figure 5(f). Another instance sj of the same SA template
is appended to the hardware genome. Thereafter, half of
the layers currently assigned to si are randomly chosen
and assigned to sj . The goal is to increase parallelisation.

• SA Merging Mutation: It increases the load in a random
SA instance si to mutate a chromosome, as shown in
Figure 5(g). Another instance sj is randomly chosen, and
all the layers currently assigned to it are assigned to si. If
si and sj are of different SA templates, all the mappings
of the imported layers undergo mapping transformation.
The goal is to reduce chip area cost with reduced SAs.

• SA Position Mutation: It swaps the position of two
SAI hosting tiles in the 2D Mesh NoP, as shown in
Figure 5(h). The goal is to find a configuration where the
system bandwidth is distributed among the NoP links and
memory interfaces in a way to avoid bottlenecks (stalls).

• SA Template Mutation: It modifies the SAT of a ran-

6

Parent A

a) Scheduling Crossover

e) SA Crossover

f) SA Splitting Mutation

b) Scheduling Mutation c) Mapping Mutation

0 2 3 1 4

0 1 4 2 3

0 2 1 4 3

0 1 2 3 4

Crossover Point Crossover Point
d) Mapping Crossover

0 3 1 2 4

0 1 3 2 4

① RandomLi ② Find first successorLj

③ Random between

Target

④ Swap if legal

③ Choose another
random mapping

① Choose random layer

① Choose random SAI ID

Donor SAT
==

Receiver SAT

Donor SAT
!=

Receiver SAT

Receiver SAT
Donor SATLk

AM
L 0 L 1 L 2

L 3 L 4

9 12 00 2

MF9,2 4412
6

9

0

9 44 0

0 04 2 17 1 15

0 11 2 12 1 09

0 2

7 1 5 310

5 17 4 93

7 17 4 1210

5 1 5 83

Mapping
Transform

Parent B

Offspring A

Offspring B

Parent A

Parent B

Parent A

Parent B

Offspring A

Offspring B

Layer

② Mapp. Pareto Set
for layer 9 and templ. 2

Original

Mutated

Original

Original

Mutated

h) Position Mutation

i) Template Mutation
0 4

1 2

1 2

0 4

2 5

2 5

3 2

3 2

Original

Mutated

0 2

0 3

1 2

1 1

0 13 2 18 1 1110 2 1 1

0 1

Mutated
0 1 1 1

Original
0 1 1 0

Mutated
0 2 1 0

g) SA Merging Mutation

Mutated
0 1

Original
0 1 1 3

Offspring A

0 11 2 12 1 190 3 1 2

Offspring B

② Copy genes of layers assigned to the selected SAI
③ Transform mappings if templates are different

④ Remove unused SAIs

SAI4.0 SAI2.1

SAI5.2 SAI2.3

MI MI
Encodes for

SAI4.0SAI2.1

SAI5.2 SA2.3

MI MI
Encodes for

SAT0

SAT1

SAT2

SAT Library

j) Layer Assignment Mutation
Original

0 1 1 2

Mutated
0 1 1 2

Target

Figure 5: MOHaM-specific genetic operators

dom SA instance si to mutate a chromosome, as shown
in Figure 5(i). All the mappings from different layers to
the mutated instance si undergo mapping transformation.

• Layer Assignment Mutation: It modifies the SAI of
a random layer li to mutate a chromosome, as shown
in Figure 5(j). If the modified SAI is an instance of a
different SA template, mapping transformation is applied.

C. Objectives Evaluation

Three objective metrics are evaluated for each individual:
latency, energy, and area. Their values are determined by both,
hardware and software genomes of the individual’s chromo-
some. For example, increasing the number of SA instances
decreases latency but increases area. Similarly, the mapping
strategy for each layer of the AM(L,D), and the SA templates
affect all three metrics. The translation from chromosome
encoding to target metrics is not through analytical models.
Timeloop [39] + Accelergy [54] framework only allows the
simulation of a single layer on a single accelerator instance.
Hence, it is repeatedly run for multiple layers and SA instances
and the results are combined and processed by MOHaM.

The translation begins from the hardware genome. Each of
its genes is converted into a SA instance of the appropriate
SAT . At this point, the buffer sizes and instances of each SAT
is unknown. Then software genomes are examined to identify
which mappings are used for each gene (layer). Now all the
free parameters, including number of PEs, size of buffers, etc.
are set to maximum required by the mappings for all the layers
assigned to an SA instance. So, each of the instances can
execute all the assigned layers, and the area is estimated.

As each of the mappings has a corresponding energy, sum-
ming them for all the layers could provide the total estimation.
However, the energy for reads and writes in buffers depends on
their sizes. Hence, energy for each mapping must be estimated
based on the updated values of the free parameters in the
corresponding SA instance. Their sum is the total energy.

Latency is estimated using the topological sorting encoded
in the software genome. Each of its genes (layers) is read
sequentially and mapped on the assigned SA instances. This
traversal guarantees that all the dependencies of a layer are
already scheduled before its turn comes. Each layer has a start
and end time and the total latency is estimated based on the
latest end time among all the layers. However, this is true only
when there are no communication or memory bottlenecks.

1) Communication Modeling: As shown in Figure 3(d),
MOHaM assumes that the SAIs and memory are intercon-
nected by a 2D Mesh NoP. It is implemented via on-package
links using a passive silicon interposer. It employs efficient
intra-package signalling circuits using Ground-Reference Sig-
naling (GRS) technology. Specifically, each chiplet is equipped
with eight chiplet-to-chiplet GRS transceivers; four transmit-
ters and four receivers. A transceiver has four data lanes, each
providing 4 GB/s, thus a total peak chiplet bandwidth of 4 *
4 GB/s = 16 GB/s and energy of 0.82 pJ/bit. MOHaM also
assumes that the entry points of NoP are Memory Interfaces
(MIs), which connect memory banks. SAIs reads and writes
in their nearest MIs. Some CPU processing happens between
layer execution (e.g. tensor reordering) and the output is stored
in the nearest memory bank of the SAI executing the next
layer. Depending on their position in the NoP, multiple SAIs
could be assigned the same MI , thus competing for the shared
link. If a time segment has parallel execution of layers and
the required bandwidth is below the bottleneck, it undergoes
temporal dilation. However, it only concerns the SAIs sharing
the same MI and requires compensating the start times of all
the subsequent layers to keep respecting dependencies. After
re-evaluating the stalled time segments, the latest end time
among all the layers becomes the estimated total latency.

2) Convergence Criterion: The MOHaM framework sup-
ports a GA stopping criterion based on the density of the non-
dominated solutions presented in [47]. Alternatively, simulat-
ing for a fixed number of generations can also be configured.

7

Table 3: Multi-tenant workload scenarios

Workload Domain DNN Model

A Mobile
Image Classification MobileNetV3L
Image Segmentation DeepLabV3+ MN2
Language Processing Mobile-BERT

B Edge
Image Classification ResNet50

Object Detection SSD-ResNet34
Language Processing BERT-Large

C AR/VR

Image Classification ResNet50
Object Detection SSD-MobileNetV1

YOLOv3
Image Segmentation UNet

D Data Center

Image Classification GoogleNet
Object Detection YOLOv3

Language Processing BERT-Large
Recommendation DLRM

VI. EVALUATION

A. Methodology

1) DNN Models and Workloads: Inspired by the popular
MLPerf benchmark suite [45][36], multiple DNN models
from major application domains like vision, language and
recommendation are considered. MOHaM is proposed for
design-space exploration of multi-accelerator systems where
the application domains are known/guessed apriori. Hence, it is
evaluated against mobile, edge, and AR/VR workloads. While
these devices do not deploy multi-accelerator systems directly,
MOHaM assumes that their heavy workloads are offloaded
in the cloud, i.e., data centers. MOHaM is also evaluated
against a data center workload to show its effectiveness if
the application domains can be guessed. Table 3 presents the
workload scenarios along with their DNN models. MOHaM
takes them as inputs in the ONNX [1] interoperable format.

2) Sub-Accelerator Templates: The following state-of-the-
art accelerators constitute the SAT library in MOHaM:

• Eyeriss [9]: Row-stationary dataflow
• Simba [50]: Weight-stationary dataflow
• ShiDianNao [15]: Output-stationary dataflow
They are diverse and chosen to support various existing as

well emerging workloads. Table 4 presents MOHaM configu-
ration for the experiments, where the GA exploration param-
eters are based on the guidelines of the widely adopted [16]
and architectural parameters are based on the state-of-the-art.

3) Solution Anatomy: Figure 6 presents the scheduling
Gantt chart and the area breakdown of SA for two Pareto-
optimal solutions found by MOHaM for the AR/VR workload.
The Gantt chart shows on the y-axis, the instantiated SAs
(SAIs), and on the x-axis, the start and end times of the
execution of each DNN layer, measured in cycles. Each bar
represents the execution of a layer of the AM(L,D) on a par-
ticular SAI . Layers from different DNN models are depicted
with different opacity, while layers executed on instances of
different SATs are depicted with different colours. Segments
with black traces represent bandwidth-constrained execution
segments as described in Section V-C1. The pie chart on the

Table 4: MOHaM configuration

Exploration Parameters

Num. Generations 300 Population Size 250
Sched. Cross. Prob. 0.103 Sched. Mut. Prob. 0.052

SA Cross Prob. 0.045 Template Mut. Prob. 0.041
Merging Mut. Prob. 0.042 Splitting Mut. Prob. 0.039
Mapping Mut. Prob. 0.048 Mapping Cross. Prob. 0.047

Layer Assign. Mut. Prob. 0.025 Position Mut. Prob. 0.027
Max. SA Instances 16

Common Architecture Parameters

Technology Node 45 nm DRAM Technology LPDDR4
Mem. Interface BW 4 GB/s Clock Frequency 1 GHz

Word Size 8 bits SRAM Buf. BW 16 GB/s

Eyeriss-like Template

Dataflow Row-Stat. Max. Num. of PEs 168
Max. Shared Buf. Size 131 KiB Max. PE Scratchpad Size 0.5 KiB

Simba-like Template

Dataflow Weight-Stat. Max. Num. of PEs 128
Max. MACs per PE 32 Max. Global Buf. Size 64 KiB

Max. Weight Buf. Size 32 KiB Max. Input Buf. Size 8 KiB
Max. Accum. Buf. Size 3 KiB

ShiDianNao-like Template

Dataflow Output-Stat. Max. Num. of PEs 256
Max. Neurons Buf. Size 131 KiB Max. Synapses Buf. Size 131 KiB

right displays the area contribution of each SAI with different
opacity, namely the MAS area breakdown. Instances from the
same SAT have the same colour. It can be noticed that the
two solutions shown here are very different in terms of their
scheduling and sub-accelerator instantiation preferences.

B. Results

For all the 3D plots shown in Figures 7, 8 and 9, the more
left and top a solution lies, the better it is in performance.
For the ease of readability, the plots report the projection
of the solution points on three different planes, i.e., latency,
energy and area. A common observation valid for all the results
presented in this section is the distribution of the solutions
found by the proposed MOHaM framework. In fact, they are
spread over a large Pareto surface rather than being limited to
a specific region. This is an important advantage of MOHaM
as it provides a variety of trade-off solutions from which the
most appropriate for the specific use case can be selected.

1) Independent vs Simultaneous Optimisation: This experi-
ment evaluates the need for hardware-mapping co-optimisation
in multi-accelerator systems. Figure 7 shows the comparison
of Pareto-optimal solutions with hardware-only, mapping-only
and hardware-mapping co-optimisation. For hardware-only op-
timisation, the proposed MOHaM framework is run with only
Simba-like SA templates to have a fixed dataflow (e.g., weight-
stationary), similar to ConfuciuX [26]. For mapping-only opti-
misation, MOHaM is run with a fixed hardware configuration
of 16 heterogeneous SAs, similar to MAGMA [28]. Finally,
they are compared with the result of a complete MOHaM
run for hardware-mapping co-optimisation. It is observed that
for the AR/VR workload, hardware-only optimisation (red)
has lower energy and area but high latency. This is due
to the fixed mapping (dataflow) strategy for all the layers.
Whereas mapping-only optimisation (blue) has lower latency

8

0 400,000,000 800,000,000 1,200,000,000 1,600,000,000 2,000,000,000

start_time, end_time

0

1

2

3

4

5

a
c
c
e
le

ra
to

r eyeriss

shidiannao

simba

template

mobilenetv1-ssd300

resnet50

unet

yolov3

network

Scheduling

eyeriss
shidiannao
simba

template

0

1

2

3

4

5

accelerator

Area

0 8,000,000,000 16,000,000,000 24,000,000,000 32,000,000,000 40,000,000,000 48,000,000,000

start_time, end_time

0

1

2

3

4

a
c
c
e
le

ra
to

r eyeriss

shidiannao

template

mobilenetv1-ssd300

resnet50

unet

yolov3

network

Scheduling

eyeriss
shidiannao

template

0

1

2

3

4

accelerator

Area

Figure 6: Comparison of scheduling Gantt chart and SA area contribution for two Pareto-optimal solutions.

Energy [mJ]

102.1102.2102.3102.4102.5102.6102.7 La
te
nc

y
[C

yc
le
s]

108.8
109.0
109.2
109.4
109.6
109.8
1010.0

A
re

a
[m

m
2]100.0

100.5

101.0

101.5

102.0

Mobile

Energy [mJ]

103.6
103.8

104.0
104.2 La

te
nc

y
[C

yc
le
s]

1010.0
1010.2
1010.4
1010.6
1010.8
1011.0
1011.2

A
re

a
[m

m
2]

100.0

100.5

101.0

101.5

102.0

Edge

Energy [mJ]

103.0103.2103.4103.6103.8 La
te
nc

y
[C

yc
le
s]

109.5
1010.0

1010.5
1011.0

A
re

a
[m

m
2]

100.0

100.5

101.0

101.5

102.0

AR/VR

Energy [mJ]

103.3
103.4

103.5
103.6

103.7 La
te
nc

y
[C

yc
le
s]

1010.0
1010.2
1010.4
1010.6
1010.8
1011.0

A
re

a
[m

m
2]

100.0

100.5

101.0

101.5

102.0

Data Center

Mapping-Only Optimisation Hardware-Only Optimisation Hardware-Mapping Co-Optimisation

Figure 7: Comparison of Pareto-optimal solutions with hardware-only, mapping-only, and hardware-mapping co-optimisation.

Energy [mJ]

102.1102.2102.3102.4102.5102.6102.7102.8 La
te
nc

y
[C

yc
le
s]

108.8
109.0
109.2
109.4
109.6
109.8
1010.0

A
re

a
[m

m
2]100.0

100.5

101.0

101.5

Mobile

Energy [mJ]

103.6
103.8

104.0
104.2 La

te
nc

y
[C

yc
le
s]

1010.0
1010.2
1010.5
1010.8
1011.0
1011.2
1011.5

A
re

a
[m

m
2]

100.0

100.5

101.0

101.5

Edge

Energy [mJ]

103.0103.2103.4103.6103.8 La
te
nc

y
[C

yc
le
s]

109.5
1010.0

1010.5
1011.0

A
re

a
[m

m
2]

100.0
100.2
100.5
100.8
101.0
101.2
101.5
101.8

AR/VR

Energy [mJ]

103.3103.4103.5103.6103.7103.8 La
te
nc

y
[C

yc
le
s]

1010.0
1010.2
1010.4
1010.6
1010.8
1011.0

A
re

a
[m

m
2]

100.0

100.5

101.0

101.5

Data Center

Simba Homogeneous ShiDianNao Homogeneous Eyeriss Homogeneous Heterogeneous

Figure 8: Comparison of Pareto-optimal solutions with homogenous and heterogenous sub-accelerators.

Energy [mJ]

102.0102.1102.2102.3102.4102.5102.6102.7 La
te
nc

y
[C

yc
le
s]

108.8
109.0
109.2
109.4
109.6
109.8
1010.0

A
re

a
[m

m
2]100.0

100.5

101.0

101.5

Mobile

Energy [mJ]

103.4
103.6

103.8
104.0

104.2 La
te
nc

y
[C

yc
le
s]

1010.0
1010.2
1010.4
1010.6
1010.8
1011.0
1011.2

A
re

a
[m

m
2]

100.0

100.5

101.0

101.5

Edge

Energy [mJ]

102.8103.0103.2103.4103.6103.8 La
te
nc

y
[C

yc
le
s]

109.5
1010.0

1010.5
1011.0

A
re

a
[m

m
2]

100.0
100.2
100.5
100.8
101.0
101.2
101.5

AR/VR

Energy [mJ]

103.3
103.4

103.5
103.6

103.7 La
te
nc

y
[C

yc
le
s]

1010.0
1010.2
1010.4
1010.6
1010.8
1011.0

A
re

a
[m

m
2]

100.0

100.5

101.0

101.5

Data Center

Energy Single-Objective Latency Single-Objective Energy-Latency-Area Multi-Objective

Figure 9: Comparison of individual solutions with mono-objective and Pareto-optimal solutions with multi-objective exploration.

9

and energy but at the cost of a very high area. This is due
to the fixed hardware configuration. In general, across all
the workload scenarios, hardware-only optimisation has better
energy and area but poor latency. Similarly, mapping-only
optimisation has better latency and energy but high area. With
hardware-mapping co-optimisation, the solutions (black) are
very interesting. For example, for the Data Center workload,
they have solutions with lower latency and energy along with
minimum area. They have equally competitive solutions across
other workloads. This is a result of the proposed MOHaM
framework instantiating the SAs with optimal hardware re-
sources and mapping the layers according to their dataflow
preferences for optimal execution. Hardware-mapping co-
optimisation can accommodate diverse workloads and offer
the best overall performance in a multi-accelerator system.

2) Homogeneous vs Heterogeneous Accelerators: This ex-
periment evaluates the need for heterogeneous SAs in multi-
accelerator systems. Figure 8 shows the comparison of Pareto-
optimal solutions with homogeneous and heterogeneous SAs.
For homogeneous SAs, the proposed MOHaM framework
is run once, each with only Eyeriss-like, Simba-like, and
ShiDianNao-like SA templates. Then, they are compared with
the result of a complete MOHaM run for heterogeneous SAs.
It is observed that for the Mobile workload, Eyeriss (blue) has
lower latency and area but at the cost of high energy. On the
contrary, ShiDianNao (red) is both energy and area efficient
but at the cost of very high latency. For the Edge workload,
Simba (yellow) has the best while ShiDianNao has the worst
latency, respectively. Eyeriss has lower latency, energy as well
as area. In general, among the solutions with homogeneous
SAs, Simba has better latency while ShiDianNao has a better
area. With heterogeneous SAs, the solutions (black) are more
uniformly distributed. For example, for the AR/VR workload,
they have solutions with the lowest latency, lowest energy
and lowest area. Their solutions are equally good for the
Data Center and other workloads. It is possible as layers
with specific dataflow preferences can be executed on the ap-
propriate SAs. The proposed MOHaM framework instantiates
the right set of SAs from the available templates and maps
the layers for efficient execution. Hence, flexible dataflow
with heterogeneous SAs increases the scalability of a multi-
accelerator system toward diverse and emerging workloads.

3) Single-Objective vs Multi-Objective Exploration: This
experiment evaluates the need for multi-objective exploration
in multi-accelerator systems. Figure 9 shows the comparison of
individual solutions with mono-objective and Pareto-optimal
solutions with multi-objective exploration. For mono-objective
exploration, the proposed MOHaM framework is run once,
each with only latency, and energy as an objective. Then,
they are compared with the result of a complete MOHaM
run for multi-objective exploration. When objectives conflict,
improving one results in worsening the other. For example,
for the Data Center workload, the solution with energy as
an objective (blue) is at the extreme left (i.e., best), but the
latency and area are worst. Similarly, the solution with latency
as an objective (red) is best while the area is worst. A multi-

Energy [mJ]

100
125

150
175

200
225

250

La
te
nc

y
[C

yc
le
s]

1e
8

0.5

0.6

0.7

0.8
0.9

1.0

A
re

a
[m

m
2]

10

15

20

25

30

35

GAMMA CoSA MOHaM

Figure 10: Comparison with state-of-the-art.

accelerator system design is usually explored with more than
one objective. Existing works aggregate them into a single
solution (e.g., EDP), which suffers if they conflict. Other
commonly used forms of aggregations, like the weighted sum
of cost functions, do not allow to explore the non-convex
regions of the design space. MOHaM supports distinct multi-
objective exploration and provides a Pareto-optimal set of
solutions (black). For the same Data Center workload, it
provides multiple competitive solutions with the lowest energy,
latency and area. Similar solutions are available across all the
workloads. Multi-objective exploration helps identify the most
suitable design for a multi-accelerator system as per the need.

4) Comparison with state-of-the-art: This experiment eval-
uates MOHaM against two popular state-of-the-art frame-
works, CoSA [24] and GAMMA [27]. Like MOHaM, these
frameworks also extended Timeloop [39] and are open-
sourced, hence considered for a fair comparison. Please note
that the simulations for CoSA and GAMMA are conducted
using appropriate architectures with flexible dataflows without
considering the reconfiguration overheads. Figure 10 shows a
subset of Pareto-optimal design points obtained by MOHaM
along with the design points by CoSA and GAMMA for
the AR/VR workload. MOHaM clearly shows the ability
to generate better design points than its competitors. For
example, the design point ▲ improves latency by 16.5% and
energy by 3.6% compared to CoSA, and latency by 7.1% and
energy by 4.7% compared to GAMMA. Based on the specific
requirements, other design points can also be considered. For
example, if energy is the priority, design point ▼ improves
energy by 21.2% and 22% compared to CoSA and GAMMA,
at the cost of 17.3% and 29% decrease in latency, respectively.

5) Sensitivity of NoP Link Bandwidth: MOHaM calculates
latency by combining and processing results of individual
Timeloop [39] simulations and considering an NoP for data
transfer between MIs to SAIs. Hence, latency depends on
the NoP hosting tile of each SAI , the amount of data accessed
from memory, determined by the layer mappings, and the NoP
link bandwidth. Figure 11 shows the latency of Pareto-optimal
design points by MOHaM with varying NoP link bandwidth
for the AR/VR workload. Apart from some exceptions due to
the stochastic nature of GAs, there is a trend of decreasing la-

10

2 4 6 8 10 12 14 16 18 20
NoP Link Bandwidth [GB/s]

1

2

3

4

5
Cy

cle
s

1e8

Figure 11: Latency against varying NoP link bandwidth.

0 10 20 30 40 50
Percetage of Pareto Dominated individuals

Control

Layer Assignment Mutation

Scheduling Mutation

SA Merging Mutation

Mapping Mutation

SA Crossover

SA Template Mutation

Scheduling Crossover

SA Splitting Mutation

Mapping Crossover

A
b
la

tio
n

14.9%

15.2%

20.9%

23.9%

31.8%

38.3%

40.3%

40.8%

44.8%

48.8%

Figure 12: Percentage of Pareto-dominated solutions when an
operator is ablated from the baseline MOHaM configuration.

tency with increasing bandwidth. However, bandwidth beyond
16 GB/s does not seem to improve the latency significantly.

6) Ablation Study: This experiment evaluates the effective-
ness of the custom genetic operators implemented for the
MOHaM framework. It compares the result of a complete
MOHaM run with the results of runs, each with one operator
disabled (ablated). Figure 9 shows the percentage of Pareto-
dominated solutions when an operator is ablated from the
baseline MOHaM configuration (refer Table 4). Due to the
multi-objective exploration, the results are obtained as follows:
(a) MOHaM is run with the default configuration, and a
baseline Pareto-optimal set of individuals is selected from
the final population. (b) MOHaM is re-run with the same
configuration to get a second Pareto-optimal set of individuals.
(c) They are compared to identify how many individuals from
the second set are Pareto-dominated by the individuals from
the baseline set. This is found to be 14.9% and serves as the
Control setting, as shown in Figure 12. Control serves as the
threshold to compare ablation results. (d) MOHaM is run after
disabling one custom genetic operator to get a new Pareto-
optimal set of individuals. (e) Steps (c) and (d) are repeated
for all the operators and the results are presented in Figure 12.
A higher percentage of Pareto-dominated individuals indicate
that the operator is more effective and that the performance of
MOHaM will deteriorate without it. All the operators perform
better than the Control threshold, implying that each one of
them has some significance in the MOHaM framework.

VII. RELATED WORKS

DNN Models: Data center workloads are dominated
by vision, language and recommendation-based DNN mod-

els [7][46][41]. Most of the vision models are dominated
by Convolution (CONV) with some MultiLayer Percep-
tron (MLP) and Fully Connected (FC) layers towards the
end [49][52][21][51][31]. Language models are dominated by
MLP, Recurrent Neural Network (RNN), embedding lookup
and attention layers [13][30][44][42]. Whereas, recommenda-
tion models mainly consists of MLP, embedding lookup and
attention layers [19][38][22][11]. Design Space Exploration:
Hardware optimisations are used at design-time by ASICs
or even at compile-time by FPGAs. Literature has multiple
heuristic as well as ML-based hardware frameworks [37][26].
Mapping optimisations are used at compile-time or even at
run-time by reconfigurable accelerators. Literature has map-
ping frameworks based on heuristics [57], random search [50],
mixed integer programming [24], ML [55], etc. Hardware-
mapping co-optimisations are used at design-time. Due to
the huge cross-coupled search space, very few works have
explored co-optimisation for single [58][29][48][55][57] and
multi-accelerator systems [33][18]. Multi-Tenancy: Until re-
cently, multi-tenancy has not been an important design choice
for accelerators. Google TPU [5], Microsoft Brainwave [17],
etc., focused on running a single DNN model for maximum
throughput. The popular MLPerf benchmark suite also focused
on a single model for both, training [36] and inference [45].
Data centers are now employing multi-accelerator systems
where throughput is not the only objective. Moreover, they
have the natural ability to support diverse DNN models as each
SA could favour a specific layer. Hence, multi-tenancy has
garnered significant attention recently [28][35][33][18][12][8].

VIII. DISCUSSION

MOHaM is used offline at design time to obtain a Pareto-
optimal set of MAS and an optimal S for each of them. Hence
its search time is irrelevant to the performance of the chosen
MAS and S. When the MAS is deployed, it is assumed
to employ batch processing, which is very common in data
centers. A batch may have DNN models from heterogeneous
application domains. Based on their specific requirements,
S schedules these models on the heterogenous SAIs of the
MAS. What might seem just like multi-workload scheduling
is also multi-tenant, as heterogeneous DNN models execute
in parallel. MOHaM uses SAT s with fixed dataflow as state-
of-the-art Herald [33] found them better over SAT s with
flexible dataflow. Nevertheless, MOHaM is can deal with
flexible dataflow and full mapping search. Any SAT that
Timeloop [39] supports can be given as an input to MOHaM.

IX. CONCLUSION

This work presents MOHaM, a multi-objective hardware-
mapping co-optimisation framework for multi-tenant DNN
accelerators. The key takeaways are: (1) The ever-increasing
computation demand led to the design of multi-accelerator
systems, where hardware-mapping co-optimisation is very
important. However, due to the enormous cross-coupled search
space, very few works explored the design space (refer Ta-
ble 1). (2) Multi-tenancy is a primary enabler of scalability

11

in multi-accelerator systems. However, most of the existing
works employ manually-designed supports that limit acceler-
ator utilisation and deployment benefits. (3) Multi-accelerator
systems are often designed for multiple objectives, yet no work
exists for multi-objective exploration. (4) MOHaM is the first
open-source framework to consider all these limitations. (5)
MOHaM also has infrastructure for NoP/data movement.

REFERENCES

[1] “Open Neural Network Exchange (ONNX),” https://github.com/onnx/
onnx, 2017.

[2] “Google Edge TPUv1,” https://cloud.google.com/edge-tpu/, 2018.
[3] (2018) NVDIA Deep Learning Accelerator (NVDLA). http://nvdla.org/.
[4] (2021) Cerebras CS-2. https://cerebras.net/system/.
[5] (2021) Google Cloud TPUv4. https://cloud.google.com/tpu/.
[6] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-

Morales, I.-A. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco,
S.-C. Liu et al., “NullHop: A Flexible Convolutional Neural Network
Accelerator based on Sparse Representations of Feature Maps,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 30, no. 3,
pp. 644–656, 2018.

[7] M. Anderson, B. Chen, S. Chen, S. Deng, J. Fix, M. Gschwind, A. Kala-
iah, C. Kim, J. Lee, and J. a. Liang, “First-Generation Inference Acceler-
ator Deployment at Facebook,” arXiv preprint arXiv:2107.04140, 2021.

[8] E. Baek, D. Kwon, and J. Kim, “A Multi-Neural Network Acceleration
Architecture,” in Proceedings of the Annual ACM/IEEE International
Symposium on Computer Architecture, 2020, pp. 940–953.

[9] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.
127–138, 2016.

[10] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 9, no. 2, pp. 292–308, 2019.

[11] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & Deep
Learning for Recommender Systems,” in Proceedings of the Annual
Workshop on Deep Learning for Recommender Systems, 2016, pp. 7–10.

[12] Y. Choi and M. Rhu, “PREMA: A Predictive Multi-Task Scheduling
Algorithm for Preemptible Neural Processing Units,” in Proceedings
of the Annual IEEE International Symposium on High Performance
Computer Architecture, 2020, pp. 220–233.

[13] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. Le, and R. Salakhutdinov,
“Transformer-XL: Attentive Language Models beyond a Fixed-Length
Context,” in Proceedings of the Annual Meeting of the Association for
Computational Linguistics, 2019, pp. 2978–2988.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[15] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting Vision Processing Closer to
the Sensor,” in Proceedings of the Annual ACM/IEEE International
Symposium on Computer Architecture, 2015, pp. 92–104.

[16] A. E. Eiben and S. K. Smit, “Parameter Tuning for Configuring and
Analyzing Evolutionary Algorithms,” Elsevier Swarm and Evolutionary
Computation, vol. 1, no. 1, pp. 19–31, 2011.

[17] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A Configurable
Cloud-Scale DNN Processor for Real-Time AI,” in Proceedings of the
Annual ACM/IEEE International Symposium on Computer Architecture,
2018, pp. 1–14.

[18] S. Ghodrati, B. H. Ahn, J. K. Kim, S. Kinzer, B. R. Yatham, N. Alla,
H. Sharma, M. Alian, E. Ebrahimi, N. S. Kim et al., “Planaria:
Dynamic Architecture Fission for Spatial Multi-Tenant Acceleration
of Deep Neural Networks,” in Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture, 2020, pp. 681–697.

[19] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-
H. S. Lee, D. Brooks, and C.-J. Wu, “DeepRecSys: A System for
Optimizing End-to-End At-Scale Neural Recommendation Inference,”
in Proceedings of the Annual ACM/IEEE International Symposium on
Computer Architecture, 2020, pp. 982–995.

[20] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient Inference Engine on Compressed Deep Neural
Network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the Annual IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[22] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proceedings of the Annual ACM International
Conference on World Wide Web, 2017, pp. 173–182.

[23] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind Mappings: Enabling Efficient Algorithm-Accelerator
Mapping Space Search,” in Proceedings of the Annual ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2021, pp. 943–958.

[24] Q. Huang, A. Kalaiah, M. Kang, J. Demmel, G. Dinh, J. Wawrzynek,
T. Norell, and Y. S. Shao, “CoSA: Scheduling by Constrained Optimiza-
tion for Spatial Accelerators,” in Proceedings of the Annual ACM/IEEE
International Symposium on Computer Architecture, 2021, pp. 554–566.

[25] A. B. Kahn, “Topological Sorting of Large Networks,” Communications
of the ACM, vol. 5, no. 11, pp. 558–562, 1962.

[26] S.-C. Kao, G. Jeong, and T. Krishna, “ConfuciuX: Autonomous Hard-
ware Resource Assignment for DNN Accelerators using Reinforcement
Learning,” in Proceedings of the Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2020, pp. 622–636.

[27] S.-C. Kao and T. Krishna, “Gamma: Automating the HW Mapping of
DNN Models on Accelerators via Genetic Algorithm,” in Proceedings
of the Annual IEEE/ACM International Conference On Computer Aided
Design, 2020, pp. 1–9.

[28] S.-C. Kao and T. Krishna, “MAGMA: An Optimization Framework for
Mapping Multiple DNNs on Multiple Accelerator Cores,” in Proceed-
ings of the Annual IEEE International Symposium on High-Performance
Computer Architecture, 2022, pp. 1–17.

[29] S.-C. Kao, M. Pellauer, A. Parashar, and T. Krishna, “DiGamma:
Domain-Aware Genetic Algorithm for HW-Mapping Co-Optimization
for DNN Accelerators,” in Proceedings of the Annual IEEE Design,
Automation & Test in Europe Conference & Exhibition, 2022, pp. 1–6.

[30] J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
Proceedings of the Annual Conference of the North American Chapter
of the Association for Computational Linguistics, 2019, pp. 4171–4186.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Proceedings of the
Annual Conference on Neural Information Processing Systems, 2012,
pp. 1097—-1105.

[32] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Kr-
ishna, “Understanding Reuse, Performance, and Hardware Cost of DNN
Dataflow: A Data-Centric Approach,” in Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
754–768.

[33] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chandra,
“Heterogeneous Dataflow Accelerators for Multi-DNN Workloads,” in
Proceedings of the Annual IEEE International Symposium on High-
Performance Computer Architecture, 2021, pp. 71–83.

[34] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable Inter-
connects,” in Proceedings of the Annual ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 461–475.

[35] Z. Liu, J. Leng, Z. Zhang, Q. Chen, C. Li, and M. Guo, “VELTAIR:
Towards High-Performance Multi-Tenant Deep Learning Services via
Adaptive Compilation and Scheduling,” in Proceedings of the Annual
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2022, pp. 1–14.

[36] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Pat-
terson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf et al., “MLPerf Training
Benchmark,” in Proceedings of the Annual Conference on Machine
Learning and Systems, 2020, pp. 336–349.

[37] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi et al., “A Graph Placement
Methodology for Fast Chip Design,” Nature, vol. 594, no. 7862, pp.
207–212, 2021.

[38] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini et al., “Deep

12

https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://cloud.google.com/edge-tpu/
http://nvdla.org/
https://cerebras.net/system/
https://cloud.google.com/tpu/

Learning Recommendation Model for Personalization and Recommen-
dation Systems,” arXiv preprint arXiv:1906.00091, 2019.

[39] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
Systematic Approach to DNN Accelerator Evaluation,” in Proceedings
of the Annual IEEE International Symposium on Performance Analysis
of Systems and Software, 2019, pp. 304–315.

[40] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
Accelerator for Compressed-Sparse Convolutional Neural Networks,”
ACM SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 27–40,
2017.

[41] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law,
P. Malani, A. Malevich, S. Nadathur et al., “Deep Learning Inference
in Facebook Data Centers: Characterization, Performance Optimizations
and Hardware Implications,” arXiv preprint arXiv:1811.09886, 2018.

[42] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep Contextualized Word Representations,” pp.
2227–2237, 2018.

[43] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “SIGMA: A Sparse and Irregular GEMM
Accelerator with Flexible Interconnects for DNN Training,” in Proceed-
ings of the Annual IEEE International Symposium on High-Performance
Computer Architecture, 2020, pp. 58–70.

[44] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language Models are Unsupervised Multitask Learners,” OpenAI Blog,
vol. 1, no. 8, p. 9, 2019.

[45] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou et al., “MLPerf
Inference Benchmark,” in Proceedings of the Annual ACM/IEEE Inter-
national Symposium on Computer Architecture, 2020, pp. 446–459.

[46] D. Richins, D. Doshi, M. Blackmore, A. T. Nair, N. Pathapati, A. Patel,
B. Daguman, D. Dobrijalowski, R. Illikkal, K. Long et al., “Missing
the Forest for the Trees: End-to-End AI Application Performance in
Edge Data Centers,” in Proceedings of the Annual IEEE International
Symposium on High-Performance Computer Architecture, 2020, pp.
515–528.

[47] O. Roudenko and M. Schoenauer, “A Steady Performance Stopping
Criterion for Pareto-based Evolutionary Algorithms,” in Proceedings
of the Annual International Multi-Objective Programming and Goal
Programming Conference, 2004.

[48] E. Russo, M. Palesi, S. Monteleone, D. Patti, G. Ascia, and V. Catania,
“MEDEA: A Multi-Objective Evolutionary Approach to DNN Hardware
Mapping,” in Proceedings of the Annual IEEE Design, Automation &
Test in Europe Conference & Exhibition, 2022, pp. 1–6.

[49] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,” in Proceedings
of the Annual IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018, pp. 4510–4520.

[50] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, and C. T. Gray, “Simba: Scaling Deep-Learning In-
ference with Multi-Chip-Module-Based Architecture,” in Proceedings of
the Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 14–27.

[51] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

[52] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning,”
in Proceedings of the Annual AAAI Conference on Artificial Intelligence,
2017.

[53] J. Wang, L. Guo, and J. Cong, “AutoSA: A Polyhedral Compiler for
High-Performance Systolic Arrays on FPGA,” in Proceedings of the
Annual ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2021, pp. 93–104.

[54] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-
level energy estimation methodology for accelerator designs,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2019, pp. 1–8.

[55] Q. Xiao, S. Zheng, B. Wu, P. Xu, X. Qian, and Y. Liang, “HASCO:
Towards Agile Hardware and Software Co-Design for Tensor Computa-
tion,” in Proceedings of the Annual ACM/IEEE International Symposium
on Computer Architecture, 2021, pp. 1055–1068.

[56] Y. Xu, K. Li, J. Hu, and K. Li, “A Genetic Algorithm for Task
Scheduling on Heterogeneous Computing Systems using Multiple Pri-
ority Queues,” Elsevier Information Sciences, vol. 270, pp. 255–287,
2014.

[57] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina et al., “Interstellar: Using Halide’s Scheduling Language
to Analyze DNN Accelerators,” in Proceedings of the Annual ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 369–383.

[58] D. Zhang, S. Huda, E. Songhori, K. Prabhu, Q. Le, A. Goldie, and
A. Mirhoseini, “A Full-Stack Search Technique for Domain Optimized
Deep Learning Accelerators,” in Proceedings of the Annual ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2022, pp. 27–42.

13

	Introduction
	Background
	Multi-Accelerator System
	Sub-Accelerator Architecture
	DNN Models

	Hardware-Mapping Co-Optimisation

	Motivation
	Problem Formulation
	Definitions
	Problem Formulation
	Search Space

	The MOHaM Framework
	Layer Mapper
	Global Scheduler
	Chromosome Encoding
	Custom Genetic Operators

	Objectives Evaluation
	Communication Modeling
	Convergence Criterion

	Evaluation
	Methodology
	DNN Models and Workloads
	Sub-Accelerator Templates
	Solution Anatomy

	Results
	Independent vs Simultaneous Optimisation
	Homogeneous vs Heterogeneous Accelerators
	Single-Objective vs Multi-Objective Exploration
	Comparison with state-of-the-art
	Sensitivity of NoP Link Bandwidth
	Ablation Study

	Related Works
	Discussion
	Conclusion
	References

