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Abstract—Inter-chiplet communication is a fundamental bot-
tleneck in scale-out Homogeneous Multi-Chip-Module-based
Hardware Accelerators (HMCMHAs). This paper focuses on
the problem of many-to-many communication traffic generated
when dispatching output feature map tiles among chiplets. Such
traffic has a strong impact on the latency and energy metrics
of the HMCMHAs as it exposes the limitations of the existing
wire-based Network-on-Package (NoP). This paper investigates
augmenting the existing NoP with emerging wireless in-package
communication links. The intrinsic single-hop and broadcast-
capable technology is exploited to tackle the many-to-many
communication traffic in question. We show that the proposed
wireless-enabled NoP can significantly improve the latency and
energy of Deep Neural Network (DNN) inference on HMCMHAs.

Index Terms—Deep Neural Network (DNN) Hardware Accel-
erator, Domain Specific Architecture (DSA), Multi-Chip-Module
(MCM), Network-on-Package (NoP), Wireless-enabled NoP.

I. INTRODUCTION

Many daily applications we interact with are powered by
Deep Learning (DL) techniques at their core. This includes
features such as natural language processing and speech
recognition in intelligent personal assistants, advanced driver
assistance systems in cars, and user behaviour prediction and
data security in smart homes. These DL techniques are imple-
mented using Deep Neural Networks (DNNs), Convolutional
Neural Networks (CNNs), Graph Neural Networks (GNNs),
etc. The good news is that these techniques are easy to paral-
lelise and scalable, making general-purpose Graphics Process-
ing Units (GPUs) the preferred platform for their execution.
However, limited memory bandwidth, low performance-per-
watt, and area overheads of GPUs are leading to a paradigm
shift towards Domain Specific Architectures (DSAs) [6] [7] to
improve efficiency1 and avoid the so-called “Turing Tariff”.

In the context of DNNs, industry and academia have pro-
posed various DSAs, aka DNN hardware accelerators. Despite
differences in tasks, such as training or inference, or targets,
like Internet-of-Things (IoT), edge, or cloud, these accelerators
share a similar architecture where the communication subsys-
tem is critical and plays a significant role. The parallel pro-
cessing units that constitute the architecture must have a steady
supply of data to avoid underutilisation of resources and loss
of efficiency. The communication subsystem, together with the

1Efficiency in this paper refers to reducing latency and energy consumption.

memory subsystem, manages the dispatch and retrieval of data
and determines the overall latency and energy consumption.

This paper focuses on scale-out Homogeneous Multi-Chip-
Module-based Hardware Accelerators (HMCMHAs), where
the chiplets are interconnected with a communication sub-
system called Network-on-Package (NoP). Existing literature
shows that NoP plays a significant role in determining the
overall performance of the HMCMHAs [20]. The challenge
we address is the transfer of the output feature map from one
set of chiplets that execute a layer of the DNN to another
set of chiplets that execute the next layer. This transfer is
multicast in nature and hence induces heavy traffic volume into
the NoP. We investigate how the latency and energy metrics
scale when the NoP is extended to support in-package wireless
communication using short-range millimeter-wave (mm-Wave)
technology [17]. We advocate that the naturally single-hop and
broadcast-capable wireless-enabled NoP could be a potential
solution to improve the efficiency of the HMCMHAs.

II. BACKGROUND

Many hardware accelerators are proposed for the efficient
execution of DL models, and in particular, for the DNNs [20]
[5] [13]. These accelerators typically have a memory hier-
archy, interconnection networks, and units capable of per-
forming Multiply-And-Accumulate (MAC) operations, which
are fundamental to DL algorithms. Lower-level buffers in the
memory hierarchy have limited storage capacity, high transfer
bandwidth and lower access energy, while higher-level buffers
have bigger storage capacity but are slower and energy-hungry.
Most of these accelerators employ a spatial architecture where
MAC units and memories are replicated as multiple instances
to parallelise workloads and speed up the execution of models.

Recently, the use of 2.5D integration, which involves inte-
grating multiple small chips (i.e., chiplets) on an interposer,
is increasingly gaining popularity as it represents an effective
solution to improve yield and reduce fabrication costs. More-
over, 2.5D integration also facilitates heterogeneous integra-
tion [22] and allows for compact scale-out implementations
of emerging larger and complex DL models [21]. A notable
example in this context is Simba [20], a Multi-Chip-Module
(MCM) based multi-accelerator system, where each chiplet
is a DNN accelerator (called sub-accelerator in the bigger
context) interconnected by an NoP. Unfortunately, scalable
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Figure 1: Fetching the filters and IA, performing the convolution and generating the OA for the current layer Li.
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Figure 2: Fetching the filters for the next layer Li+1.

communication between chiplets is particularly challenging
due to relatively large physical distances between chiplets,
poor technology scaling of electrical wires, and shrinking
power budgets. These issues get worsened in the case of DNN
accelerators as they exert tremendous pressure on the NoP.

In-package wireless communication using short-range mm-
Wave technology [17] opens many interesting scenarios in
the context of efficient and scalable HMCMHAs. Several
wireless transceiver designs [4] [15] [10] and system-level
simulations [1] [19] [3] [2] have shown that wireless intercon-
nects in the mm-Wave bands can reduce energy consumption
and increase the bandwidth of chip-to-chip communication
significantly as compared to the traditional metallic wired
interconnects. Thus, this paper investigates the impact on
performance2 and energy figures when the traditional wired
NoP in HMCMHAs is replaced with a wireless-enabled NoP.

III. MOTIVATION BY EXAMPLE

The communication issues in DNN accelerators have be-
come a fundamental bottleneck for performance and energy
figures. The impact of this bottleneck intensifies in MCM-
based designs where the latency and energy-per-bit of NoP
links are significantly imbalanced (in a negative way) com-
pared to those of Network-on-Chip (NoC) links. For example,
it is reported in the literature [20] that the interconnect latency
in NoP is 20ns/hop, while in NoC, it is half at just 10ns/hop.

2Performance in this paper refers to latency, hence used interchangeably.

Similarly, the interconnect energy in NoP is 1.75pJ/bit, while
in NoC, it is significantly lower (< one-fourth) at just 0.4pJ/bit.

To understand the specific problem, we present an illustra-
tive example. Consider an HMCMHA with 36 chiplets and
a weight-stationary dataflow executing a CNN workload. A
given layer Li of the workload uses 4 filters, F1, F2, F3 and
F4, for its execution, as shown in Figure 1a. Suppose Li is
mapped into 4 chiplets, each devoted to performing a convo-
lution between the corresponding filter and the input feature
map (IA). As shown in Figure 1a, each filter is fetched from
the main memory into the corresponding chiplet using unicast
communication. Whereas the IA is fetched and distributed
among the involved chiplets using multicast communication,
as shown in Figure 1b. Each chiplet performs the convolution
and produces the activations of 4 corresponding channels of
the output feature map (OA), as shown in Figure 1c.

The OA of layer Li becomes the IA for the next layer Li+1

of the workload. As shown in Figure 2a, Li+1 uses 8 filters
for its execution and is mapped into 8 chiplets, each devoted
to applying a filter to its IA. The filters are fetched into the
corresponding chiplets using unicast communication, as shown
in Figure 2b. Suppose 4 of these chiplets (shown in blue) were
involved in the execution of the previous layer Li. Hence,
the blue chiplets have one channel each of the current IA,
whereas the other 4 chiplets (shown in yellow) have nothing.
Nevertheless, none of the chiplets can initiate the convolution
as they either have partial or no IA. Each of the blue chiplets
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Figure 3: Disseminating the partial OA of layer Li to build the IA for layer Li+1.
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Figure 4: Performing the convolution and generating the OA for the layer Li+1.

must multicast its IA channel to the other chiplets involved in
the execution of Li+1, as shown in Figures 3a through 3d.

At the end of this massive all-to-all communication, each of
the involved chiplets (now all shown in blue) has the complete
IA, as shown in Figure 4a. Each of these chiplets performs the
convolution and produces the activations of 8 corresponding
channels of the new OA, as shown in Figure 4b.

The dissemination of the partial OA from the involved
chiplets of layer Li to build the IA in the involved chiplets
of layer Li+1 requires intense inter-chiplet communication.
This stresses the NoP and consequently has a strong impact
on both performance and energy. For example, Figure 5
shows the computation and communication latency and energy
breakdown for some popular CNN-based DL models. The
inferences are run on an HMCMHA platform considered for
the experiments of this work (refer Section V). As it can be
observed, on average, the contribution of the partial output
feature maps dissemination traffic (communication) accounts
for 83% and 80% of inference energy and latency, respectively.

In the remainder of the paper, we investigate wireless-
enabled inter-chiplet communication for the dissemination of
partial output feature maps. The intrinsically broadcast-capable
wireless links can tackle this massive all-to-all communication.

IV. REFERENCE PLATFORM AND MAPPING SELECTION

A. HMCMHA Platform

We consider Simba [20] as a reference HMCMHA platform.
Simba is an MCM-based multi-accelerator system that features
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Figure 5: Energy and latency breakdown of some DL models.

36 homogeneous chiplets. A wired NoP interconnects these
chiplets (or sub-accelerators). Each of them is a DNN accel-
erator and has an array of 16 Processing Elements (PEs) inter-
connected by an NoC, and a shared Global Buffer (GB). Each
PE houses 8 vector MAC units (each capable of performing
8:1 dot-product) that fetch data from an Input Buffer (IB) and
a Weight Buffer (WB) and store results into an Accumulation
Buffer (AB). GB collects weights and activations from the
main memory through the NoP and distributes them to IB
through the NoC. Similarly, outputs are written from IB to
GB and then to memory through NoC and NoP, respectively.
Figure 6 shows the block diagram of the reference Simba and
the proposed wireless-enabled version we call WSimba. The
only difference is in the NoP, where Simba employs a wired
NoP and WSimba employs a wireless-enabled NoP. Each
chiplet in WSimba is augmented with a wireless interface.
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B. Dataflow and Mapping

We consider a weight-stationary dataflow as shown in
Figure 7 in a loop-nest form. As it can be observed, for each
level of the system hierarchy, weights are uniformly partitioned
spatially (along the input channel C and the output channel
K), while the remaining dimensions are tiled temporally.

For mapping a layer with dimensions P , Q, R, S, C, and K
(dimensions H and W are derived from others), we proceed
as follows: We determine the bounds C0, C1, C2, C3, K0,
K1, K2, K3, P1, P2, P3, Q1, Q2, Q3 in such a way to:

maxC0×K0 (1)
maxC2×K2 (2)
maxC3×K3 (3)
minP3×Q3 (4)

Where Equation (1) aims to maximise MAC unit utilisation,
Equation (2) aims to maximise PE utilisation, Equation (3)
aims to maximise chiplet utilisation, and Equation (4) aims
to minimise the number of tiles used to partition the output
feature map, thereby reducing the number of iterations at the
package level. This problem has the following constraints:

K × P ×Q

K3× C3× P3×Q3
≤ GBSize (5)

K3× C3 ≤ NumChiplets (6)
K2× C2 ≤ NumPEperChiplet (7)
K0× C0 ≤ NumMACperPE (8)
K0×K1×K2×K3 = K (9)
C0× C1× C2× C3 = C (10)

P1× P2× P3 = P (11)
Q1×Q2×Q3 = Q (12)

C0, C1, C2, C3,K0,K1,K2,K3,

P1, P2, P3, Q1, Q2, Q3 ∈ N (13)

Where Equation (5) states that the output feature map size
computed by a chiplet cannot exceed the GB size (GBSize),
Equation (6), (7), and (8) states that the parallelisation de-
gree over chiplets, PEs, and MAC units cannot exceed the

//Package level
for p3=[0:P3):
  for q3=[0:Q3):
    parallel_for k3=[0:K3):
      parallel_for c3=[0:C3):
// Chiplet level
for p2=[0:P2):
  for q2=[0:Q2):
    parallel_for k2=[0:K2):
      parallel_for c2=[0:C2):
// PE level
for r=[0:R):
  for s=[0:S):
    for k1=[0:K1):
      for c1=[0:C1):
        for p1=[0:P1):
          for q1=[0:Q1):
// Vector-MAC level
parallel_for k0=[0:K0):
  parallel_for c0=[0:C0):
    p = (p3 * P2 + p2) * P1 + p1
    q = (q3 * Q2 + q2) * Q1 + q1
    k = ((k3 * K2 + k2) * K1 + k1) * K0 + k0
    c = ((c3 * C2 + c2) * C1 + c1) * C0 + c0
    OA[p,q,k] += IA[p-1+r,q-1+s,c] * W[r,s,c,k]
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Figure 7: Weight-stationary dataflow loop-nest representation.

number of chiplets (NumChiplets), the number of PEs per
chiplet (NumPEperChiplet), and the number of MAC units per
PE (NumMACperPE), respectively. Equation (9) through (12)
states that K, C, P , and Q dimensions must be factorised
considering their respective tiling upper bounds at each level of
the system hierarchy, and finally, Equation (13) states that all
the considered dimension variables must be positive integers.

For each layer of the considered DNN workload, we solve
the above nonlinear multi-objective optimisation problem with
nonlinear integer constraints by using a multi-objective Ge-
netic Algorithm (GA) based on NSGA-II [9]. We sort the
solutions of the Pareto set using Equation (1) through (4), in
that exact order. We select the first solution to map the layer.
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Figure 8: Inference latency, energy and EDP for different DNN-based DL models.

V. EXPERIMENTS

A. Simulation Setup and System Configurations

We use LAMBDA [18] as the simulation platform to run the
experiments. We consider 3 different system configurations:
Simba, Simba I, and WSimba. In Simba, for each layer, the
input feature map is fetched from the external DRAM (main
memory), and the output feature map is stored back in the
main memory. In Simba I, the first input feature map is fetched
from the main memory, and the output feature map is kept in
the GB of the chiplets to be used as the input feature map
for the next layer as discussed in Section III and shown in
Figure 1. The output feature map of the last layer is stored in
the main memory. Both Simba and Simba I use a wired 2D
Mesh NoP that employs a deterministic XY routing algorithm.
WSimba extends Simba I by augmenting chiplets with a
wireless interface. The transceiver design from [16] is used,
which considers low-power design aspects at the architecture
level. Non-coherent On-Off Keying (OOK) modulation is used
for simple and low-power circuit implementation.

Table 1 reports the values of bandwidth, latency and energy
parameters for the main memory and NoP. For the wired NoP,
we consider two design points at 480 MHz and 1.8 GHz [20].
The remaining simulation parameters used for deriving the
mapping as discussed in Sub-Section IV-B are given these
values: GBSize = 64K, NumChiplets = 36, NumPEperChiplet
= 16, NumMACperPE = 64. Input/weight precision is 8 bits.

Table 1: Architecture parameters

Main Memory

DRAM bandwidth 12 GB/s
DRAM latency 15 ns
DRAM energy per bit 1 nJ/bit

Network-on-Package
Design points wired wired wireless

480 MHz 1.8 GHz

Bandwidth (Gb/s) 44 100 20
Energy per bit (pJ/bit) 0.82 1.75 1.00

B. Experimental Results

We assess the above system configurations under 4 DNN-
based DL models, namely, AlexNet [14], VGG16 [21], Mo-
bileNetV3 [12], and ResNet50 [11]. The comparison is carried
out considering 3 figures of merit: inference latency, inference
energy and their product, popularly called Energy-Delay-
Product (EDP). Normalised results are shown in Figure 8.

In general observation, WSimba outperforms others in terms
of energy efficiency across all the considered workloads.
Despite the energy per bit being similar between the wired and
wireless-enabled NoPs, the single-hop and broadcast-capable
infrastructure of WSimba makes a significant difference.

In terms of latency, the results are more diverse. WSimba
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exhibits higher latency values compared to the average only
for VGG16, mainly in its initial layers. Figure 9 shows the
communication latency with different system configurations at
each layer of VGG16. The output feature map size in the initial
layers of VGG16 is much bigger than in the deeper layers.
Due to lower bandwidth in wireless-enabled NoP compared
to the wired counterparts, the massive initial traffic in VGG16
stresses WSimba. This is due to the inefficient utilisation of
the wireless infrastructure. For example, Figure 10 shows the
number of multicasts, wireless data volume per multicast and
their product, called wireless stress level, at each layer of
VGG16. It can be observed that the wireless stress level is
much higher in the initial layers than in the deeper layers,
resulting in higher latency values. The number of multicasts
is correlated with the number of active chiplets in subsequent
layers, which is determined by the chosen mapping. Hence,
better mapping strategies that consider inter-layer information
may improve the effectiveness of the wireless-enabled NoP.

In terms of EDP, WSimba outperforms Simba and Simba I.
Finally, we assess WSimba when the wireless-enabled NoP

is designed using different physical layers. Apart from the
traditional frequency range of mm-Wave using the zigzag
antenna with OOK modulation scheme, we explore using Sub-
THz with Amplitude-Shift Keying (ASK) modulation scheme
and THz using Multi-Walled Carbon NanoTube (MWCNT)
antennas with non-coherent OOK modulation scheme. Band-
width and energy per bit values are derived from [8]. Figure 11
shows the normalised latency and energy for different work-
loads executed by WSimba when different wireless physical
layers are employed. In terms of latency, the higher bandwidth
offered by Sub-THz and THz (320 Gb/s and 240 Gb/s,
respectively) leads to significant performance improvements.
The graph displays the percentage of latency attributable to the
main memory, which contributes no more than 11% of the total
latency. Advanced physical layers do not significantly improve
energy consumption compared to the traditional mm-Wave.
Despite the lower energy per bit of the THz-based physical
layer compared to the Sub-THz and mm-Wave, overall energy
savings are not notable, as the main memory dominates
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total energy consumption. Except for VGG16, main memory
accounts for more than 60% of the total energy consumption.

VI. CONCLUSION

In this paper, we investigate the use of wireless-enabled NoP
in chiplet-based DNN hardware accelerators. We show that
inter-chiplet communication accounts for a relevant fraction
of the total latency and energy; thus, it is a natural candidate
for optimisation. The use of in-package wireless technology,
thanks to its single-hop communication and intrinsic broadcast
capabilities, is an excellent solution to address the scale-out
needs of current and future accelerators and to alleviate the
high multicast traffic volume in the critical phase of output
feature map dispatching among the chiplets. We show that,
compared to the use of traditional wired NoP for inter-chiplet
communication, wireless-enabled NoP provides essential en-
ergy savings. Notable latency savings are also observed in
the majority of the considered workloads. Overall, when the
EDP is used as the figure of merit for ranking the different
considered implementations, using a wireless-enabled NoP
provides the best results in all the considered workloads.

We also investigate using physical layers operating at
different frequency ranges: mm-Wave, Sub-THz, and THz.
As the energy consumption is dominated by the external
DRAM, no relevant differences are noticed in terms of energy.
However, the higher bandwidths provided by Sub-THz and
THz significantly reduce the latency in all the workloads.

The evaluation is carried out considering two different
approaches for managing the delivery of the feature map from
one layer to the subsequent one. We observe that avoiding the
continuous swap of the input/output feature maps between the
main memory and the accelerators in favour of keeping feature
maps in the accelerator improves EDP. However, it is essential
to define new mapping strategies that consider the inter-layer
communication effect among subsequent layers. This aspect is
not considered in the paper and is a future research direction.
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